Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Carbon Balance Manag ; 18(1): 15, 2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37517072

ABSTRACT

BACKGROUND: The European Union (EU) has committed to achieve climate neutrality by 2050. This requires a rapid reduction of greenhouse gas (GHG) emissions and ensuring that any remaining emissions are balanced through CO2 removals. Forests play a crucial role in this plan: they are currently the main option for removing CO2 from the atmosphere and additionally, wood use can store carbon durably and help reduce fossil emissions. To stop and reverse the decline of the forest carbon sink, the EU has recently revised the regulation on land use, land-use change and forestry (LULUCF), and set a target of - 310 Mt CO2e net removals for the LULUCF sector in 2030. RESULTS: In this study, we clarify the role of common concepts in forest management - net annual increment, harvest and mortality - in determining the forest sink. We then evaluate to what extent the forest sink is on track to meet the climate goals of the EU. For this assessment we use data from the latest national GHG inventories and a forest model (Carbon Budget Model). Our findings indicate that on the EU level, the recent decrease in increment and the increase in harvest and mortality are causing a rapid drop in the forest sink. Furthermore, continuing the past forest management practices is projected to further decrease the sink. Finally, we discuss options for enhancing the sinks through forest management while taking into account adaptation and resilience. CONCLUSIONS: Our findings show that the EU forest sink is quickly developing away from the EU climate targets. Stopping and reversing this trend requires rapid implementation of climate-smart forest management, with improved and more timely monitoring of GHG fluxes. This enhancement is crucial for tracking progress towards the EU's climate targets, where the role of forests has become - and is expected to remain - more prominent than ever before.

2.
Carbon Balance Manag ; 16(1): 23, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34331610

ABSTRACT

BACKGROUND: The contribution of EU forests to climate change mitigation in 2021-2025 is assessed through the Forest Reference Levels (FRLs). The FRL is a projected country-level benchmark of net greenhouse gas emissions against which the future net emissions will be compared. The FRL models the hypothetical development of EU forest carbon sink if the historical management practices were continued, taking into account age dynamics. The Member States' FRLs have been recently adopted by the European Commission with the delegated Regulation (EU) 2021/268 amending the Regulation (EU) 2018/841. Considering the complexity of interactions between forest growth, management and carbon fluxes, there is a need to understand uncertainties linked to the FRL determination. RESULTS: We assessed the methodologies behind the modelled FRLs and evaluated the foreseen impact of continuation of management practices and age dynamics on the near-future EU27 + UK forest carbon sink. Most of the countries implemented robust modelling approaches for simulating management practices and age dynamics within the FRL framework, but faced several challenges in ensuring consistency with historical estimates. We discuss that the projected 16% increase in harvest in 2021-2025 compared to 2000-2009, mostly attributed to age dynamics, is associated to a decline of 18% of forest sink (26% for living biomass only). CONCLUSIONS: We conclude that the FRL exercise was challenging but improved the modelling capacity and data availability at country scale. The present study contributes to increase the transparency of the implementation of forest-related EU policies and provides evidence-based support to future policy development.

3.
J Environ Manage ; 183(Pt 3): 562-575, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27623369

ABSTRACT

The Asian Migratory locust (Locusta migratoria migratoria L.) is a pest that continuously threatens crops in the Amudarya River delta near the Aral Sea in Uzbekistan, Central Asia. Its development coincides with the growing period of its main food plant, a tall reed grass (Phragmites australis), which represents the predominant vegetation in the delta and which cover vast areas of the former Aral Sea, which is desiccating since the 1960s. Current locust survey methods and control practices would tremendously benefit from accurate and timely spatially explicit information on the potential locust habitat distribution. To that aim, satellite observation from the MODIS Terra/Aqua satellites and in-situ observations were combined to monitor potential locust habitats according to their corresponding risk of infestations along the growing season. A Random Forest (RF) algorithm was applied for classifying time series of MODIS enhanced vegetation index (EVI) from 2003 to 2014 at an 8-day interval. Based on an independent ground truth data set, classification accuracies of reeds posing a medium or high risk of locust infestation exceeded 89% on average. For the 12-year period covered in this study, an average of 7504 km2 (28% of the observed area) was flagged as potential locust habitat and 5% represents a permanent high risk of locust infestation. Results are instrumental for predicting potential locust outbreaks and developing well-targeted management plans. The method offers positive perspectives for locust management and treatment of infested sites because it is able to deliver risk maps in near real time, with an accuracy of 80% in April-May which coincides with both locust hatching and the first control surveys. Such maps could help in rapid decision-making regarding control interventions against the initial locust congregations, and thus the efficiency of survey teams and the chemical treatments could be increased, thus potentially reducing environmental pollution while avoiding areas where treatments are most likely to cause environmental degradation.


Subject(s)
Environmental Monitoring/methods , Grasshoppers/physiology , Pest Control/methods , Remote Sensing Technology/methods , Animals , Crops, Agricultural , Ecosystem , Rivers , Seasons , Spacecraft , Uzbekistan
4.
Environ Manage ; 38(3): 487-503, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16755357

ABSTRACT

Large lowland river valleys include a variety of floodplain environments that represent opportunities and constraints for human activities. This study integrates extensive field observations and geomorphic data with analysis of satellite remote sensing data to examine spatial relations between land use/land cover (LULC) and floodplain environments in the lower Pánuco basin of eastern Mexico. The floodplain of the lower Pánuco basin was delineated by combining a digital elevation model with a satellite image of a large flood event. The LULC was classified by combining a hybrid classification strategy with image stratification, applied to 15-m-resolution ASTER data. A geomorphic classification of floodplain environments was performed using a dry-stage image (ASTER data) and a 1993 Landsat image acquired during a large flood event. Accuracy assessment was based on aerial photographs (1:38,000), global positioning satellite ground-truthing, and a Landsat 7ETM(+) image from 2000, which resulted in an overall accuracy of 82.9% and a KHAT of 79.8% for the LULC classification. The geomorphic classification yielded 83.5% overall accuracy, whereas the KHAT was 81.5%. LULC analysis was performed for the entire floodplain and individually within four valley segments. The analysis indicates that the study area is primarily utilized for grazing and farming. Agriculture is primarily associated with coarse-grained (sandy/silty) natural levee and point bar units close to the river channel, whereas cattle grazing occurs in distal and lower-lying reaches dominated by cohesive fine-grained (clayey) deposits, such as backswamps. In the Pánuco valley, wetlands and lakes occur within backswamp environments, whereas in the Moctezuma segments, wetlands and lakes are associated with relict channels. This study reveals considerable variation in LULC related to spatial differences in floodplain environments and illustrates the importance of considering older anthropogenic influences on the landscape. The research design should be applicable for other large lowland coastal plain river valleys where agriculture is a major component of the floodplain landscape.


Subject(s)
Agriculture , Disasters , Geography , Rivers , Tropical Climate , Mexico
SELECTION OF CITATIONS
SEARCH DETAIL
...