Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 9(7): e101036, 2014.
Article in English | MEDLINE | ID: mdl-24988328

ABSTRACT

High throughput screening technologies such as acoustic droplet ejection (ADE) greatly increase the rate at which X-ray diffraction data can be acquired from crystals. One promising high throughput screening application of ADE is to rapidly combine protein crystals with fragment libraries. In this approach, each fragment soaks into a protein crystal either directly on data collection media or on a moving conveyor belt which then delivers the crystals to the X-ray beam. By simultaneously handling multiple crystals combined with fragment specimens, these techniques relax the automounter duty-cycle bottleneck that currently prevents optimal exploitation of third generation synchrotrons. Two factors limit the speed and scope of projects that are suitable for fragment screening using techniques such as ADE. Firstly, in applications where the high throughput screening apparatus is located inside the X-ray station (such as the conveyor belt system described above), the speed of data acquisition is limited by the time required for each fragment to soak into its protein crystal. Secondly, in applications where crystals are combined with fragments directly on data acquisition media (including both of the ADE methods described above), the maximum time that fragments have to soak into crystals is limited by evaporative dehydration of the protein crystals during the fragment soak. Here we demonstrate that both of these problems can be minimized by using small crystals, because the soak time required for a fragment hit to attain high occupancy depends approximately linearly on crystal size.


Subject(s)
Acoustics , Crystallography, X-Ray/methods , Proteins/chemistry , Crystallization
2.
Mar Pollut Bull ; 75(1-2): 90-97, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23987095

ABSTRACT

Most established virulence genes in Vibrio parahaemolyticus (Vp), e.g., thermostable direct hemolysin (tdh), tdh-related hemolysin (trh), and type three secretion system 2 (TTSS2), are on the chromosome 2 pathogenicity island, which also possesses numerous uncharacterized genes. We hypothesized the 2010 Deepwater Horizon (DH) oil spill would cause an increase in populations of Vibrio parahaemolyticus carrying environmental adaptation genes. Vp isolated pre- and post-spill were analyzed for TTSS2 genes, and impacts of DH oil on Vp were examined in vitro. There was no change in TTSS2 in situ, but tdh and V. vulnificus levels were higher post-spill. In vitro exposure of water samples to DH oil produced no changes in Vp densities. Two years post-spill, total Vp remained low; tdh and trh increased. These results indicate the effects of the DH oil spill on potentially pathogenic Vp subpopulations were complex and difficult to discern from other concurrent anthropogenic and natural events.


Subject(s)
Hemolysin Proteins/genetics , Petroleum Pollution , Vibrio parahaemolyticus/drug effects , Virulence Factors/genetics , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Genomic Islands/drug effects , Hemolysin Proteins/metabolism , Stress, Physiological , Vibrio parahaemolyticus/pathogenicity , Vibrio parahaemolyticus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...