Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 9(12)2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31842262

ABSTRACT

Carbon nanotube (CNT) cold cathodes are proving to be compelling candidates for miniaturized terahertz (THz) vacuum electronic devices (VEDs) owning to their superior field-emission (FE) characteristics. Here, we report on the development of a multi-sheet beam CNT cold cathode electron optical system with concurrently high beam current and high current density. The microscopic FE characteristics of the CNT film emitter is captured through the development of an empirically derived macroscopic simulation model which is used to provide representative emission performance. Through parametrically optimized macroscale simulations, a five-sheet-beam triode electron gun has been designed, and has been shown to emit up to 95 mA at 3.2 kV. Through careful engineering of the electron gun geometric parameters, a low-voltage compact THz radiation source operating in high-order TM 5 , 1 mode is investigated to improve output power and suppress mode competition. Particle in cell (PIC) simulations show the average output power is 33 W at 0.1 THz, and the beam-wave interaction efficiency is approximately 10%.

2.
Nanomaterials (Basel) ; 7(1)2017 Jan 12.
Article in English | MEDLINE | ID: mdl-28336845

ABSTRACT

Here, we investigate, through parametrically optimized macroscale simulations, the field electron emission from arrays of carbon nanotube (CNT)-coated Spindts towards the development of an emerging class of novel vacuum electron devices. The present study builds on empirical data gleaned from our recent experimental findings on the room temperature electron emission from large area CNT electron sources. We determine the field emission current of the present microstructures directly using particle in cell (PIC) software and present a new CNT cold cathode array variant which has been geometrically optimized to provide maximal emission current density, with current densities of up to 11.5 A/cm² at low operational electric fields of 5.0 V/µm.

3.
Phys Chem Chem Phys ; 18(48): 33152-33157, 2016 Dec 07.
Article in English | MEDLINE | ID: mdl-27892568

ABSTRACT

In this work we report on the fabrication of inductively coupled plasma (ICP) etched, diode-type, bulk molybdenum field emitter arrays. Emitter etching conditions as a function of etch mask geometry and process conditions were systematically investigated. For optimized uniformity, aspect ratios of >10 were achieved, with 25.5 nm-radius tips realised for masks consisting of aperture arrays some 4.45 µm in diameter and whose field electron emission performance has been herein assessed.

4.
Adv Sci (Weinh) ; 3(5): 1500318, 2016 May.
Article in English | MEDLINE | ID: mdl-27610335

ABSTRACT

The field electron emission performance of bulk, 1D, and 2D nanomaterials is here empirically compared in the largest metal-analysis of its type. No clear trends are noted between the turn-on electric field and maximum current density as a function of emitter work function, while a more pronounced correlation with the emitters dimensionality is noted. The turn-on field is found to be twice as large for bulk materials compared to 1D and 2D materials, empirically confirming the wider communities view that high aspect ratios, and highly perturbed surface morphologies allow for enhanced field electron emitters.

5.
ACS Appl Mater Interfaces ; 8(34): 22506-15, 2016 Aug 31.
Article in English | MEDLINE | ID: mdl-27482734

ABSTRACT

This study reports on a facile and widely applicable method of transferring chemical vapor deposited (CVD) graphene uniformly onto optically transparent and mechanically flexible substrates using commercially available, low-cost ultraviolet adhesive (UVA) and hot-press lamination (HPL). We report on the adhesion potential between the graphene and the substrate, and we compare these findings with those of the more commonly used cast polymer handler transfer processes. Graphene transferred with the two proposed methods showed lower surface energy and displayed a higher degree of adhesion (UVA: 4.40 ± 1.09 N/m, HPL: 0.60 ± 0.26 N/m) compared to equivalent CVD-graphene transferred using conventional poly(methyl methacrylate) (PMMA: 0.44 ± 0.06 N/m). The mechanical robustness of the transferred graphene was investigated by measuring the differential resistance as a function of bend angle and repeated bend-relax cycles across a range of bend radii. At a bend angle of 100° and a 2.5 mm bend radius, for both transfer techniques, the normalized resistance of graphene transferred on polyethylene terephthalate (PET) was around 80 times less than that of indium-tin oxide on PET. After 10(4) bend cycles, the resistance of the transferred graphene on PET using UVA and HPL was found to be, on average, around 25.5 and 8.1% higher than that of PMMA-transferred graphene, indicating that UVA- and HPL-transferred graphene are more strongly adhered compared to PMMA-transferred graphene. The robustness, in terms of maintained electrical performance upon mechanical fatigue, of the transferred graphene was around 60 times improved over ITO/PET upon many thousands of repeated bending stress cycles. On the basis of present production methods, the development of the next-generation of highly conformal, diverse form factor electronics, exploiting the emerging family of two-dimensional materials, necessitates the development of simple, low-cost, and mechanically robust transfer processes; the developed UVA and HPL approaches show significant potential and allow for large-area-compatible, near-room temperature transfer of graphene onto a diverse range of polymeric supports.

6.
Nanoscale ; 8(35): 15836-44, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27546174

ABSTRACT

The production of horizontally aligned carbon nanotubes offers a rapid means of realizing a myriad of self-assembled near-atom-scale technologies - from novel photonic crystals to nanoscale transistors. The ability to reproducibly align anisotropic nanostructures has huge technological value. Here we review the present state-of-the-art in horizontal carbon nanotube alignment. For both in and ex situ approaches, we quantitatively assess the reported linear packing densities alongside the degree of alignment possible for each of these core methodologies.

7.
Chemphyschem ; 17(16): 2545-50, 2016 Aug 18.
Article in English | MEDLINE | ID: mdl-27165783

ABSTRACT

Graphene has proven to be a promising material for transparent flexible electronics. In this study, we report the development of a transfer and doping scheme of large-area chemical vapour deposited (CVD) graphene. A technique to transfer the as-grown material onto mechanically flexible and optically transparent polymeric substrates using an ultraviolet adhesive (UVA) is outlined, along with the temporal stability of the sheet resistance and optical transparency following chemical doping with various metal chlorides (Mx Cly The sheet resistance (RS ) and 550 nm optical transparency (%T550 ) of the transferred un-doped graphene was 3.5 kΩ sq(-1) (±0.2 kΩ sq(-1) ) and 84.1 % (±2.9 %), respectively. Doping with AuCl3 showed a notable reduction in RS by some 71.4 % (to 0.93 kΩ sq(-1) ) with a corresponding %T550 of 77.0 %. After 200 h exposure to air at standard temperature and pressure, the increase in RS was found to be negligible (ΔRS AuCl3 =0.06 kΩ sq(-1) ), indicating that, of the considered Mx Cly species, AuCl3 doping offered the highest degree of time stability under ambient conditions. There appears a tendency of increasing RS with time for the remaining metal chlorides studied. We attribute the observed temporal shift to desorption of molecular dopants. We find that desorption was most significant in RhCl3 -doped samples whereas, in contrast, after 200 h in ambient conditions, AuCl3 -doped graphene showed only marginal desorption. The results of this study demonstrate that chemical doping of UVA-transferred graphene is a promising means for enhancing large-area CVD graphene in order to realise a viable platform for next-generation optically transparent and mechanically flexible electronics.

8.
Nanotechnology ; 27(8): 082501, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26807781

ABSTRACT

Following the recent global excitement and investment in the emerging, and rapidly growing, classes of one and two-dimensional nanomaterials, we here present a perspective on one of the viable applications of such materials: field electron emission based x-ray sources. These devices, which have a notable history in medicine, security, industry and research, to date have almost exclusively incorporated thermionic electron sources. Since the middle of the last century, field emission based cathodes were demonstrated, but it is only recently that they have become practicable. We outline some of the technological achievements of the past two decades, and describe a number of the seminal contributions. We explore the foremost market hurdles hindering their roll-out and broader industrial adoption and summarise the recent progress in miniaturised, pulsed and multi-source devices.

9.
RSC Adv ; 5(127): 105111-105118, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-28066543

ABSTRACT

We report on the improved field emission performance of graphene foam (GF) following transient exposure to hydrogen plasma. The enhanced field emission mechanism associated with hydrogenation has been investigated using Fourier transform infrared spectroscopy, plasma spectrophotometry, Raman spectroscopy, and scanning electron microscopy. The observed enhanced electron emissionhas been attributed to an increase in the areal density of lattice defects and the formation of a partially hydrogenated, graphane-like material. The treated GF emitter demonstrated a much reduced macroscopic turn-on field (2.5 V µm-1), with an increased maximum current density from 0.21 mA cm-2 (pristine) to 8.27 mA cm-2 (treated). The treated GFs vertically orientated protrusions, after plasma etching, effectively increased the local electric field resulting in a 2.2-fold reduction in the turn-on electric field. The observed enhancement is further attributed to hydrogenation and the subsequent formation of a partially hydrogenated structured 2D material, which advantageously shifts the emitter work function. Alongside augmentation of the nominal crystallite size of the graphitic superstructure, surface bound species are believed to play a key role in the enhanced emission. The hydrogen plasma treatment was also noted to increase the emission spatial uniformity, with an approximate four times reduction in the per unit area variation in emission current density. Our findings suggest that plasma treatments, and particularly hydrogen and hydrogen-containing precursors, may provide an efficient, simple, and low cost means of realizing enhanced nanocarbon-based field emission devices via the engineered degradation of the nascent lattice, and adjustment of the surface work function.

10.
Sci Rep ; 4: 4840, 2014 May 02.
Article in English | MEDLINE | ID: mdl-24787895

ABSTRACT

The ability to accurately design carbon nanofibre (CN) field emitters with predictable electron emission characteristics will enable their use as electron sources in various applications such as microwave amplifiers, electron microscopy, parallel beam electron lithography and advanced Xray sources. Here, highly uniform CN arrays of controlled diameter, pitch and length were fabricated using plasma enhanced chemical vapour deposition and their individual emission characteristics and field enhancement factors were probed using scanning anode field emission mapping. For a pitch of 10 µm and a CN length of 5 µm, the directly measured enhancement factors of individual CNs was 242, which was in excellent agreement with conventional geometry estimates (240). We show here direct empirical evidence that in regular arrays of vertically aligned CNs the overall enhancement factor is reduced when the pitch between emitters is less than half the emitter height, in accordance to our electrostatic simulations. Individual emitters showed narrow Gaussian-like field enhancement distributions, in excellent agreement with electric field simulations.

11.
Sci Rep ; 4: 4130, 2014 Feb 19.
Article in English | MEDLINE | ID: mdl-24549254

ABSTRACT

The development of transparent radio-frequency electronics has been limited, until recently, by the lack of suitable materials. Naturally thin and transparent graphene may lead to disruptive innovations in such applications. Here, we realize optically transparent broadband absorbers operating in the millimetre wave regime achieved by stacking graphene bearing quartz substrates on a ground plate. Broadband absorption is a result of mutually coupled Fabry-Perot resonators represented by each graphene-quartz substrate. An analytical model has been developed to predict the absorption performance and the angular dependence of the absorber. Using a repeated transfer-and-etch process, multilayer graphene was processed to control its surface resistivity. Millimetre wave reflectometer measurements of the stacked graphene-quartz absorbers demonstrated excellent broadband absorption of 90% with a 28% fractional bandwidth from 125-165 GHz. Our data suggests that the absorbers' operation can also be extended to microwave and low-terahertz bands with negligible loss in performance.

12.
Small ; 10(1): 95-9, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-23913746

ABSTRACT

Carbon nanostructures have been much sought after for cold-cathode field emission applications. Herein a printing technique is reported to controllably nanostructure chemical vapor deposited graphene into vertically standing fins. The method allows for the creation of regular arrays of bilayer graphene fins, with sharp ridges that, when printed onto gold electrodes, afford a new type of field emission electron source geometry. The approach affords tunable morphologies and excellent long term and cyclic stabilities.

13.
Nano Lett ; 13(3): 967-74, 2013 Mar 13.
Article in English | MEDLINE | ID: mdl-23339597

ABSTRACT

It has been claimed that graphene growth on copper by chemical vapor deposition is dominated by crystallization from the surface initially supersaturated with carbon adatoms, which implies that the growth is independent of hydrocarbon addition after the nucleation phase. Here, we present an alternative growth model based on our observations that oppose this claim. Our Gompertzian sigmoidal growth kinetics and secondary nucleation behavior support the postulate that the growth can be controlled by adsorption-desorption dynamics and the dispersive kinetic processes of catalytic dissociation and dehydrogenation of carbon precursors on copper.

14.
Materials (Basel) ; 6(6): 2262-2273, 2013 May 31.
Article in English | MEDLINE | ID: mdl-28809272

ABSTRACT

A plasma-enhanced chemical vapour deposition reactor has been developed to synthesis horizontally aligned carbon nanotubes. The width of the aligning sheath was modelled based on a collisionless, quasi-neutral, Child's law ion sheath where these estimates were empirically validated by direct Langmuir probe measurements, thereby confirming the proposed reactors ability to extend the existing sheath fields by up to 7 mm. A 7 mbar growth atmosphere combined with a 25 W plasma permitted the concurrent growth and alignment of carbon nanotubes with electric fields of the order of 0.04 V µm-1 with linear packing densities of up to ~5 × 104 cm-1. These results open up the potential for multi-directional insitu alignment of carbon nanotubes providing one viable route to the fabrication of many novel optoelectronic devices.

15.
ACS Nano ; 6(4): 3236-42, 2012 Apr 24.
Article in English | MEDLINE | ID: mdl-22394307

ABSTRACT

We present electronically controlled field emission characteristics of arrays of individually ballasted carbon nanotubes synthesized by plasma-enhanced chemical vapor deposition on silicon-on-insulator substrates. By adjusting the source-drain potential we have demonstrated the ability to controllable limit the emission current density by more than 1 order of magnitude. Dynamic control over both the turn-on electric field and field enhancement factor have been noted. A hot electron model is presented. The ballasted nanotubes are populated with hot electrons due to the highly crystalline Si channel and the high local electric field at the nanotube base. This positively shifts the Fermi level and results in a broad energy distribution about this mean, compared to the narrow spread, lower energy thermalized electron population in standard metallic emitters. The proposed vertically aligned carbon nanotube field-emitting electron source offers a viable platform for X-ray emitters and displays applications that require accurate and highly stable control over the emission characteristics.

16.
Nanotechnology ; 23(16): 165702, 2012 Apr 27.
Article in English | MEDLINE | ID: mdl-22460805

ABSTRACT

One-dimensional ferroelectric nanostructures, carbon nanotubes (CNT) and CNT-inorganic oxides have recently been studied due to their potential applications for microelectronics. Here, we report coating of a registered array of aligned multi-wall carbon nanotubes (MWCNT) grown on silicon substrates by functional ferroelectric Pb(Zr,Ti)O3 (PZT) which produces structures suitable for commercial prototype memories. Microstructural analysis reveals the crystalline nature of PZT with small nanocrystals aligned in different directions. First-order Raman modes of MWCNT and PZT/MWCNT/n-Si show the high structural quality of CNT before and after PZT deposition at elevated temperature. PZT exists mostly in the monoclinic Cc/Cm phase, which is the origin of the high piezoelectric response in the system. Low-loss square piezoelectric hysteresis obtained for the 3D bottom-up structure confirms the switchability of the device. Current-voltage mapping of the device by conducting atomic force microscopy (c-AFM) indicates very low transient current. Fabrication and functional properties of these hybrid ferroelectric-carbon nanotubes is the first step towards miniaturization for future nanotechnology sensors, actuators, transducers and memory devices.


Subject(s)
Computer Storage Devices , Lead/chemistry , Micro-Electrical-Mechanical Systems/instrumentation , Nanotechnology/instrumentation , Nanotubes, Carbon/chemistry , Signal Processing, Computer-Assisted/instrumentation , Titanium/chemistry , Zirconium/chemistry , Electric Conductivity , Equipment Design , Equipment Failure Analysis , Nanotubes, Carbon/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...