Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Hum Brain Mapp ; 45(8): e26716, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38798117

ABSTRACT

Acute psychosocial stress affects learning, memory, and attention, but the evidence for the influence of stress on the neural processes supporting cognitive control remains mixed. We investigated how acute psychosocial stress influences performance and neural processing during the Go/NoGo task-an established cognitive control task. The experimental group underwent the Trier Social Stress Test (TSST) acute stress induction, whereas the control group completed personality questionnaires. Then, participants completed a functional magnetic resonance imaging (fMRI) Go/NoGo task, with self-report, blood pressure and salivary cortisol measurements of induced stress taken intermittently throughout the experimental session. The TSST was successful in eliciting a stress response, as indicated by significant Stress > Control between-group differences in subjective stress ratings and systolic blood pressure. We did not identify significant differences in cortisol levels, however. The stress induction also impacted subsequent Go/NoGo task performance, with participants who underwent the TSST making fewer commission errors on trials requiring the most inhibitory control (NoGo Green) relative to the control group, suggesting increased vigilance. Univariate analysis of fMRI task-evoked brain activity revealed no differences between stress and control groups for any region. However, using multivariate pattern analysis, stress and control groups were reliably differentiated by activation patterns contrasting the most demanding NoGo trials (i.e., NoGo Green trials) versus baseline in the medial intraparietal area (mIPA, affiliated with the dorsal attention network) and subregions of the cerebellum (affiliated with the default mode network). These results align with prior reports linking the mIPA and the cerebellum to visuomotor coordination, a function central to cognitive control processes underlying goal-directed behavior. This suggests that stressor-induced hypervigilance may produce a facilitative effect on response inhibition which is represented neurally by the activation patterns of cognitive control regions.


Subject(s)
Inhibition, Psychological , Magnetic Resonance Imaging , Stress, Psychological , Humans , Stress, Psychological/physiopathology , Stress, Psychological/diagnostic imaging , Male , Female , Adult , Young Adult , Executive Function/physiology , Hydrocortisone/metabolism , Psychomotor Performance/physiology
2.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38745558

ABSTRACT

Arousal state is regulated by subcortical neuromodulatory nuclei, such as locus coeruleus, which send wide-reaching projections to cortex. Whether higher-order cortical regions have the capacity to recruit neuromodulatory systems to aid cognition is unclear. Here, we hypothesized that select cortical regions activate the arousal system, which, in turn, modulates large-scale brain activity, creating a functional circuit predicting cognitive ability. We utilized the Human Connectome Project 7T functional magnetic resonance imaging dataset (n = 149), acquired at rest with simultaneous eye tracking, along with extensive cognitive assessment for each subject. First, we discovered select frontoparietal cortical regions that drive large-scale spontaneous brain activity specifically via engaging the arousal system. Second, we show that the functionality of the arousal circuit driven by bilateral posterior cingulate cortex (associated with the default mode network) predicts subjects' cognitive abilities. This suggests that a cortical region that is typically associated with self-referential processing supports cognition by regulating the arousal system.


Subject(s)
Arousal , Brain , Cognition , Connectome , Magnetic Resonance Imaging , Rest , Humans , Arousal/physiology , Cognition/physiology , Male , Female , Connectome/methods , Adult , Rest/physiology , Brain/physiology , Brain/diagnostic imaging , Young Adult , Nerve Net/physiology , Nerve Net/diagnostic imaging , Neural Pathways/physiology , Neural Pathways/diagnostic imaging
3.
bioRxiv ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38617344

ABSTRACT

Arousal state is regulated by subcortical neuromodulatory nuclei, such as locus coeruleus, which send wide-reaching projections to cortex. Whether higher-order cortical regions have the capacity to recruit neuromodulatory systems to aid cognition is unclear. Here, we hypothesized that select cortical regions activate the arousal system, which in turn modulates large-scale brain activity, creating a functional circuit predicting cognitive ability. We utilized the Human Connectome Project 7T functional magnetic resonance imaging dataset (N=149), acquired at rest with simultaneous eye tracking, along with extensive cognitive assessment for each subject. First, we discovered select frontoparietal cortical regions that drive large-scale spontaneous brain activity specifically via engaging the arousal system. Second, we show that the functionality of the arousal circuit driven by bilateral posterior cingulate cortex (associated with the default mode network) predicts subjects' cognitive abilities. This suggests that a cortical region that is typically associated with self-referential processing supports cognition by regulating the arousal system.

4.
bioRxiv ; 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38077097

ABSTRACT

Task-free brain activity affords unique insight into the functional structure of brain network dynamics and is a strong marker of individual differences. In this work, we present an algorithmic optimization framework that makes it possible to directly invert and parameterize brain-wide dynamical-systems models involving hundreds of interacting brain areas, from single-subject time-series recordings. This technique provides a powerful neurocomputational tool for interrogating mechanisms underlying individual brain dynamics ("precision brain models") and making quantitative predictions. We extensively validate the models' performance in forecasting future brain activity and predicting individual variability in key M/EEG markers. Lastly, we demonstrate the power of our technique in resolving individual differences in the generation of alpha and beta-frequency oscillations. We characterize subjects based upon model attractor topology and a dynamical-systems mechanism by which these topologies generate individual variation in the expression of alpha vs. beta rhythms. We trace these phenomena back to global variation in excitation-inhibition balance, highlighting the explanatory power of our framework in generating mechanistic insights.

5.
Cognition ; 241: 105608, 2023 12.
Article in English | MEDLINE | ID: mdl-37804574

ABSTRACT

A critical difference between decimal and whole numbers is that among whole numbers the number of digits provides reliable information about the size of the number, e.g., double-digit numbers are larger than single-digit numbers. However, for decimals, fewer digits can sometimes denote a larger number (i.e., 0.8 > 0.27). Accordingly, children and adults perform worse when comparing such Inconsistent decimal pairs relative to Consistent pairs, where the larger number also has more digits (i.e., 0.87 > 0.2). Two explanations have been posited for this effect. The string length congruity account proposes that participants compare each position in the place value system, and they additionally compare the number of digits. The semantic interference account suggests that participants additionally activate the whole number referents of numbers - the numbers unadorned with decimal points (e.g., 8 < 27) - and compare these. The semantic interference account uniquely predicts that for Inconsistent problems with the same actual rational distance, those with larger whole number distances should be harder, e.g., 0.9 vs. 0.81 should be harder than 0.3 vs. 0.21 because 9 < < 81 whereas 3 < 21. Here we test this prediction in two experiments with college students (Study 1: n = 58 participants, Study 2: n = 78). Across both, we find a main effect of consistency, demonstrating string length effects, and also that whole number distance interferes with processing conflicting decimals, demonstrating semantic interference effects. Evidence for both effects supports the semantic interference account, highlighting that decimal comparison difficulties arise from multiple competing numerical codes. Finally, for accuracy we found no relationship between whole number distance sensitivity and math achievement, indicating that whole number magnitude interference affects participants similarly across the spectrum of math achievement.


Subject(s)
Semantics , Adult , Child , Humans , Mathematics , Reaction Time/physiology
6.
bioRxiv ; 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37425922

ABSTRACT

During cognitive task learning, neural representations must be rapidly constructed for novel task performance, then optimized for robust practiced task performance. How the geometry of neural representations changes to enable this transition from novel to practiced performance remains unknown. We hypothesized that practice involves a shift from compositional representations (task-general activity patterns that can be flexibly reused across tasks) to conjunctive representations (task-specific activity patterns specialized for the current task). Functional MRI during learning of multiple complex tasks substantiated this dynamic shift from compositional to conjunctive representations, which was associated with reduced cross-task interference (via pattern separation) and behavioral improvement. Further, we found that conjunctions originated in subcortex (hippocampus and cerebellum) and slowly spread to cortex, extending multiple memory systems theories to encompass task representation learning. The formation of conjunctive representations hence serves as a computational signature of learning, reflecting cortical-subcortical dynamics that optimize task representations in the human brain.

7.
Neuroimage ; 278: 120300, 2023 09.
Article in English | MEDLINE | ID: mdl-37524170

ABSTRACT

Brain activity flow models estimate the movement of task-evoked activity over brain connections to help explain network-generated task functionality. Activity flow models have been shown to accurately generate task-evoked brain activations across a wide variety of brain regions and task conditions. However, these models have had limited explanatory power, given known issues with causal interpretations of the standard functional connectivity measures used to parameterize activity flow models. We show here that functional/effective connectivity (FC) measures grounded in causal principles facilitate mechanistic interpretation of activity flow models. We progress from simple to complex FC measures, with each adding algorithmic details reflecting causal principles. This reflects many neuroscientists' preference for reduced FC measure complexity (to minimize assumptions, minimize compute time, and fully comprehend and easily communicate methodological details), which potentially trades off with causal validity. We start with Pearson correlation (the current field standard) to remain maximally relevant to the field, estimating causal validity across a range of FC measures using simulations and empirical fMRI data. Finally, we apply causal-FC-based activity flow modeling to a dorsolateral prefrontal cortex region (DLPFC), demonstrating distributed causal network mechanisms contributing to its strong activation during a working memory task. Notably, this fully distributed model is able to account for DLPFC working memory effects traditionally thought to rely primarily on within-region (i.e., not distributed) recurrent processes. Together, these results reveal the promise of parameterizing activity flow models using causal FC methods to identify network mechanisms underlying cognitive computations in the human brain.


Subject(s)
Brain Mapping , Brain , Humans , Brain Mapping/methods , Brain/physiology , Memory, Short-Term/physiology , Magnetic Resonance Imaging/methods , Cognition
8.
Eur J Neurosci ; 57(3): 458-478, 2023 02.
Article in English | MEDLINE | ID: mdl-36504464

ABSTRACT

Visual shape completion is a canonical perceptual organization process that integrates spatially distributed edge information into unified representations of objects. People with schizophrenia show difficulty in discriminating completed shapes, but the brain networks and functional connections underlying this perceptual difference remain poorly understood. Also unclear is whether brain network differences in schizophrenia occur in related illnesses or vary with illness features transdiagnostically. To address these topics, we scanned (functional magnetic resonance imaging, fMRI) people with schizophrenia, bipolar disorder, or no psychiatric illness during rest and during a task in which they discriminated configurations that formed or failed to form completed shapes (illusory and fragmented condition, respectively). Multivariate pattern differences were identified on the cortical surface using 360 predefined parcels and 12 functional networks composed of such parcels. Brain activity flow mapping was used to evaluate the likely involvement of resting-state connections for shape completion. Illusory/fragmented task activation differences ('modulations') in the dorsal attention network (DAN) could distinguish people with schizophrenia from the other groups (AUCs > .85) and could transdiagnostically predict cognitive disorganization severity. Activity flow over functional connections from the DAN could predict secondary visual network modulations in each group, except in schizophrenia. The secondary visual network was strongly and similarly modulated in each group. Task modulations were dispersed over more networks in patients compared to controls. In summary, DAN activity during visual perceptual organization is distinct in schizophrenia, symptomatically relevant, and potentially related to improper attention-related feedback into secondary visual areas.


Subject(s)
Bipolar Disorder , Illusions , Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Brain/physiology , Brain Mapping , Bipolar Disorder/diagnostic imaging , Cognition , Magnetic Resonance Imaging
9.
Elife ; 112022 12 20.
Article in English | MEDLINE | ID: mdl-36537658

ABSTRACT

Thalamocortical interaction is a ubiquitous functional motif in the mammalian brain. Previously (Hwang et al., 2021), we reported that lesions to network hubs in the human thalamus are associated with multi-domain behavioral impairments in language, memory, and executive functions. Here, we show how task-evoked thalamic activity is organized to support these broad cognitive abilities. We analyzed functional magnetic resonance imaging (MRI) data from human subjects that performed 127 tasks encompassing a broad range of cognitive representations. We first investigated the spatial organization of task-evoked activity and found a basis set of activity patterns evoked to support processing needs of each task. Specifically, the anterior, medial, and posterior-medial thalamus exhibit hub-like activity profiles that are suggestive of broad functional participation. These thalamic task hubs overlapped with network hubs interlinking cortical systems. To further determine the cognitive relevance of thalamic activity and thalamocortical functional connectivity, we built a data-driven thalamocortical model to test whether thalamic activity can be used to predict cortical task activity. The thalamocortical model predicted task-specific cortical activity patterns, and outperformed comparison models built on cortical, hippocampal, and striatal regions. Simulated lesions to low-dimensional, multi-task thalamic hub regions impaired task activity prediction. This simulation result was further supported by profiles of neuropsychological impairments in human patients with focal thalamic lesions. In summary, our results suggest a general organizational principle of how the human thalamocortical system supports cognitive task activity.


Subject(s)
Cerebral Cortex , Magnetic Resonance Imaging , Humans , Cerebral Cortex/physiology , Executive Function/physiology , Cognition , Brain Mapping/methods , Thalamus/physiology , Neural Pathways/physiology
10.
PLoS Biol ; 20(8): e3001686, 2022 08.
Article in English | MEDLINE | ID: mdl-35980898

ABSTRACT

How cognitive task behavior is generated by brain network interactions is a central question in neuroscience. Answering this question calls for the development of novel analysis tools that can firstly capture neural signatures of task information with high spatial and temporal precision (the "where and when") and then allow for empirical testing of alternative network models of brain function that link information to behavior (the "how"). We outline a novel network modeling approach suited to this purpose that is applied to noninvasive functional neuroimaging data in humans. We first dynamically decoded the spatiotemporal signatures of task information in the human brain by combining MRI-individualized source electroencephalography (EEG) with multivariate pattern analysis (MVPA). A newly developed network modeling approach-dynamic activity flow modeling-then simulated the flow of task-evoked activity over more causally interpretable (relative to standard functional connectivity [FC] approaches) resting-state functional connections (dynamic, lagged, direct, and directional). We demonstrate the utility of this modeling approach by applying it to elucidate network processes underlying sensory-motor information flow in the brain, revealing accurate predictions of empirical response information dynamics underlying behavior. Extending the model toward simulating network lesions suggested a role for the cognitive control networks (CCNs) as primary drivers of response information flow, transitioning from early dorsal attention network-dominated sensory-to-response transformation to later collaborative CCN engagement during response selection. These results demonstrate the utility of the dynamic activity flow modeling approach in identifying the generative network processes underlying neurocognitive phenomena.


Subject(s)
Brain Mapping , Brain , Brain/physiology , Brain Mapping/methods , Cognition , Electroencephalography/methods , Humans , Magnetic Resonance Imaging/methods , Nerve Net/physiology
11.
Netw Neurosci ; 6(2): 570-590, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35733420

ABSTRACT

Functional connectivity (FC) studies have predominantly focused on resting state, where ongoing dynamics are thought to reflect the brain's intrinsic network architecture, which is thought to be broadly relevant because it persists across brain states (i.e., is state-general). However, it is unknown whether resting state is the optimal state for measuring intrinsic FC. We propose that latent FC, reflecting shared connectivity patterns across many brain states, better captures state-general intrinsic FC relative to measures derived from resting state alone. We estimated latent FC independently for each connection using leave-one-task-out factor analysis in seven highly distinct task states (24 conditions) and resting state using fMRI data from the Human Connectome Project. Compared with resting-state connectivity, latent FC improves generalization to held-out brain states, better explaining patterns of connectivity and task-evoked activation. We also found that latent connectivity improved prediction of behavior outside the scanner, indexed by the general intelligence factor (g). Our results suggest that FC patterns shared across many brain states, rather than just resting state, better reflect state-general connectivity. This affirms the notion of "intrinsic" brain network architecture as a set of connectivity properties persistent across brain states, providing an updated conceptual and mathematical framework of intrinsic connectivity as a latent factor.

12.
STAR Protoc ; 3(1): 101094, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35128473

ABSTRACT

Traditional cognitive neuroscience uses task-evoked activations to map neurocognitive processes (and information) to brain regions; however, how those processes are generated is unknown. We developed activity flow mapping to identify and empirically validate network mechanisms underlying the generation of neurocognitive processes. This approach models the movement of task-evoked activity over brain connections to predict task-evoked activations. We present a protocol for using the Brain Activity Flow Toolbox (https://colelab.github.io/ActflowToolbox/) to identify network mechanisms underlying neurocognitive processes of interest. For complete details on the use and execution of this protocol, please refer to Cole et al., 2021.


Subject(s)
Brain Mapping , Brain , Brain/diagnostic imaging , Movement
13.
Nat Commun ; 13(1): 673, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35115530

ABSTRACT

The human ability to adaptively implement a wide variety of tasks is thought to emerge from the dynamic transformation of cognitive information. We hypothesized that these transformations are implemented via conjunctive activations in "conjunction hubs"-brain regions that selectively integrate sensory, cognitive, and motor activations. We used recent advances in using functional connectivity to map the flow of activity between brain regions to construct a task-performing neural network model from fMRI data during a cognitive control task. We verified the importance of conjunction hubs in cognitive computations by simulating neural activity flow over this empirically-estimated functional connectivity model. These empirically-specified simulations produced above-chance task performance (motor responses) by integrating sensory and task rule activations in conjunction hubs. These findings reveal the role of conjunction hubs in supporting flexible cognitive computations, while demonstrating the feasibility of using empirically-estimated neural network models to gain insight into cognitive computations in the human brain.


Subject(s)
Adaptation, Psychological/physiology , Brain/physiology , Nerve Net/physiology , Neural Networks, Computer , Neural Pathways/physiology , Psychomotor Performance/physiology , Adult , Algorithms , Brain/diagnostic imaging , Brain Mapping , Cognition/physiology , Cohort Studies , Female , Humans , Magnetic Resonance Imaging/methods , Male , Nerve Net/diagnostic imaging , Neural Pathways/diagnostic imaging , Young Adult
14.
Cereb Cortex ; 32(20): 4464-4479, 2022 10 08.
Article in English | MEDLINE | ID: mdl-35076709

ABSTRACT

A set of distributed cognitive control networks are known to contribute to diverse cognitive demands, yet it is unclear how these networks gain this domain-general capacity. We hypothesized that this capacity is largely due to the particular organization of the human brain's intrinsic network architecture. Specifically, we tested the possibility that each brain region's domain generality is reflected in its level of global (hub-like) intrinsic connectivity as well as its particular global connectivity pattern ("connectivity fingerprint"). Consistent with prior work, we found that cognitive control networks exhibited domain generality as they represented diverse task context information covering sensory, motor response, and logic rule domains. Supporting our hypothesis, we found that the level of global intrinsic connectivity (estimated with resting-state functional magnetic resonance imaging [fMRI]) was correlated with domain generality during tasks. Further, using a novel information fingerprint mapping approach, we found that each cognitive control region's unique rule response profile("information fingerprint") could be predicted based on its unique intrinsic connectivity fingerprint and the information content in regions outside cognitive control networks. Together, these results suggest that the human brain's intrinsic network architecture supports its ability to represent diverse cognitive task information largely via the location of multiple-demand regions within the brain's global network organization.


Subject(s)
Brain Mapping , Brain , Brain/diagnostic imaging , Brain/physiology , Humans , Magnetic Resonance Imaging , Nerve Net/diagnostic imaging , Nerve Net/physiology
15.
Front Neuroimaging ; 1: 982288, 2022.
Article in English | MEDLINE | ID: mdl-37555140

ABSTRACT

Transcranial electrical stimulation (tES) technology and neuroimaging are increasingly coupled in basic and applied science. This synergy has enabled individualized tES therapy and facilitated causal inferences in functional neuroimaging. However, traditional tES paradigms have been stymied by relatively small changes in neural activity and high inter-subject variability in cognitive effects. In this perspective, we propose a tES framework to treat these issues which is grounded in dynamical systems and control theory. The proposed paradigm involves a tight coupling of tES and neuroimaging in which M/EEG is used to parameterize generative brain models as well as control tES delivery in a hybrid closed-loop fashion. We also present a novel quantitative framework for cognitive enhancement driven by a new computational objective: shaping how the brain reacts to potential "inputs" (e.g., task contexts) rather than enforcing a fixed pattern of brain activity.

16.
Annu Rev Control ; 54: 363-376, 2022.
Article in English | MEDLINE | ID: mdl-38250171

ABSTRACT

The development of technologies for brain stimulation provides a means for scientists and clinicians to directly actuate the brain and nervous system. Brain stimulation has shown intriguing potential in terms of modifying particular symptom clusters in patients and behavioral characteristics of subjects. The stage is thus set for optimization of these techniques and the pursuit of more nuanced stimulation objectives, including the modification of complex cognitive functions such as memory and attention. Control theory and engineering will play a key role in the development of these methods, guiding computational and algorithmic strategies for stimulation. In particular, realizing this goal will require new development of frameworks that allow for controlling not only brain activity, but also latent dynamics that underlie neural computation and information processing. In the current opinion, we review recent progress in brain stimulation and outline challenges and potential research pathways associated with exogenous control of cognitive function.

17.
Sci Adv ; 7(29)2021 07.
Article in English | MEDLINE | ID: mdl-34261649

ABSTRACT

Cognitive dysfunction is a core feature of many brain disorders, including schizophrenia (SZ), and has been linked to aberrant brain activations. However, it is unclear how these activation abnormalities emerge. We propose that aberrant flow of brain activity across functional connectivity (FC) pathways leads to altered activations that produce cognitive dysfunction in SZ. We tested this hypothesis using activity flow mapping, an approach that models the movement of task-related activity between brain regions as a function of FC. Using functional magnetic resonance imaging data from SZ individuals and healthy controls during a working memory task, we found that activity flow models accurately predict aberrant cognitive activations across multiple brain networks. Within the same framework, we simulated a connectivity-based clinical intervention, predicting specific treatments that normalized brain activations and behavior in patients. Our results suggest that dysfunctional task-evoked activity flow is a large-scale network mechanism contributing to cognitive dysfunction in SZ.


Subject(s)
Schizophrenia , Brain/physiology , Brain Mapping/methods , Cognition/physiology , Humans , Magnetic Resonance Imaging/methods
18.
Neuroimage Clin ; 30: 102663, 2021.
Article in English | MEDLINE | ID: mdl-33866300

ABSTRACT

Prescription opioid use disorder (POUD) has reached epidemic proportions in the United States, raising an urgent need for diagnostic biological tools that can improve predictions of disease characteristics. The use of neuroimaging methods to develop such biomarkers have yielded promising results when applied to neurodegenerative and psychiatric disorders, yet have not been extended to prescription opioid addiction. With this long-term goal in mind, we conducted a preliminary study in this understudied clinical group. Univariate and multivariate approaches to distinguishing between POUD (n = 26) and healthy controls (n = 21) were investigated, on the basis of structural MRI (sMRI) and resting-state functional connectivity (restFC) features. Univariate approaches revealed reduced structural integrity in the subcortical extent of a previously reported addiction-related network in POUD subjects. No reliable univariate between-group differences in cortical structure or edgewise restFC were observed. Contrasting these mixed univariate results, multivariate machine learning classification approaches recovered more statistically reliable group differences, especially when sMRI and restFC features were combined in a multi-modal model (classification accuracy = 66.7%, p < .001). The same multivariate multi-modal approach also yielded reliable prediction of individual differences in a clinically relevant behavioral measure (persistence behavior; predicted-to-actual overlap r = 0.42, p = .009). Our findings suggest that sMRI and restFC measures can be used to reliably distinguish the neural effects of long-term opioid use, and that this endeavor numerically benefits from multivariate predictive approaches and multi-modal feature sets. This can serve as theoretical proof-of-concept for future longitudinal modeling of prognostic POUD characteristics from neuroimaging features, which would have clearer clinical utility.


Subject(s)
Analgesics, Opioid , Opioid-Related Disorders , Humans , Magnetic Resonance Imaging , Neuroimaging , Opioid-Related Disorders/diagnostic imaging , Prescriptions
19.
Neuroimage ; 236: 118069, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33878383

ABSTRACT

Visual shape completion recovers object shape, size, and number from spatially segregated edges. Despite being extensively investigated, the process's underlying brain regions, networks, and functional connections are still not well understood. To shed light on the topic, we scanned (fMRI) healthy adults during rest and during a task in which they discriminated pac-man configurations that formed or failed to form completed shapes (illusory and fragmented condition, respectively). Task activation differences (illusory-fragmented), resting-state functional connectivity, and multivariate patterns were identified on the cortical surface using 360 predefined parcels and 12 functional networks composed of such parcels. Brain activity flow mapping (ActFlow) was used to evaluate the likely involvement of resting-state connections for shape completion. We identified 36 differentially-active parcels including a posterior temporal region, PH, whose activity was consistent across 95% of observers. Significant task regions primarily occupied the secondary visual network but also incorporated the frontoparietal, dorsal attention, default mode, and cingulo-opercular networks. Each parcel's task activation difference could be modeled via its resting-state connections with the remaining parcels (r=.62, p<10-9), suggesting that such connections undergird shape completion. Functional connections from the dorsal attention network were key in modelling task activation differences in the secondary visual network. Dorsal attention and frontoparietal connections could also model activations in the remaining networks. Taken together, these results suggest that shape completion relies upon a sparsely distributed but densely interconnected network coalition that is centered in the secondary visual network, coordinated by the dorsal attention network, and inclusive of at least three other networks.


Subject(s)
Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Connectome/methods , Form Perception/physiology , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging , Nerve Net/physiology , Pattern Recognition, Visual/physiology , Adult , Female , Humans , Male , Middle Aged , Young Adult
20.
J Neurosci ; 41(12): 2684-2702, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33542083

ABSTRACT

Resting-state functional connectivity has provided substantial insight into intrinsic brain network organization, yet the functional importance of task-related change from that intrinsic network organization remains unclear. Indeed, such task-related changes are known to be small, suggesting they may have only minimal functional relevance. Alternatively, despite their small amplitude, these task-related changes may be essential for the ability of the human brain to adaptively alter its functionality via rapid changes in inter-regional relationships. We used activity flow mapping-an approach for building empirically derived network models-to quantify the functional importance of task-state functional connectivity (above and beyond resting-state functional connectivity) in shaping cognitive task activations in the (female and male) human brain. We found that task-state functional connectivity could be used to better predict independent fMRI activations across all 24 task conditions and all 360 cortical regions tested. Further, we found that prediction accuracy was strongly driven by individual-specific functional connectivity patterns, while functional connectivity patterns from other tasks (task-general functional connectivity) still improved predictions beyond resting-state functional connectivity. Additionally, since activity flow models simulate how task-evoked activations (which underlie behavior) are generated, these results may provide mechanistic insight into why prior studies found correlations between task-state functional connectivity and individual differences in behavior. These findings suggest that task-related changes to functional connections play an important role in dynamically reshaping brain network organization, shifting the flow of neural activity during task performance.SIGNIFICANCE STATEMENT Human cognition is highly dynamic, yet the functional network organization of the human brain is highly similar across rest and task states. We hypothesized that, despite this overall network stability, task-related changes from the intrinsic (resting-state) network organization of the brain strongly contribute to brain activations during cognitive task performance. Given that cognitive task activations emerge through network interactions, we leveraged connectivity-based models to predict independent cognitive task activations using resting-state versus task-state functional connectivity. This revealed that task-related changes in functional network organization increased prediction accuracy of cognitive task activations substantially, demonstrating their likely functional relevance for dynamic cognitive processes despite the small size of these task-related network changes.


Subject(s)
Brain/physiology , Cognition/physiology , Magnetic Resonance Imaging/methods , Nerve Net/physiology , Psychomotor Performance/physiology , Adult , Brain/diagnostic imaging , Female , Humans , Male , Nerve Net/diagnostic imaging , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...