Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Drug Metab ; 5(1): 21-53, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14965249

ABSTRACT

Several members of different families of the ATP-binding cassette (ABC) superfamily of transport proteins are capable of transporting an extraordinarily structurally diverse array of endo- and xenobiotics and their metabolites across cell membranes. Together, these transporters play an important role in the absorption, disposition and elimination of these chemicals in the body. In tumor cells, increased expression of these drug transporters is associated with resistance to multiple chemotherapeutic agents. In this review, current knowledge of the biochemical, physiological and pharmacological properties of nine members of the multidrug resistance protein (MRP)-related ABCC family (MRP1, MRP2, MRP3, MRP4, MRP5, MRP6, MRP7, ABCC11 and ABCC12) as well as the G family member, ABCG2/BCRP, are summarized. A focus is placed on the structural similarities and differences of these drug transporters as well as the molecular determinants of their substrate specificities and transport activities. Factors that regulate expression of the MRP-related proteins and ABCG2/BCRP are also reviewed.


Subject(s)
ATP-Binding Cassette Transporters/physiology , Multidrug Resistance-Associated Proteins/physiology , Neoplasm Proteins/physiology , ATP Binding Cassette Transporter, Subfamily G, Member 2 , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Biological Transport , Drug Resistance, Multiple/genetics , Gene Expression Regulation , Humans , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Substrate Specificity , Xenobiotics/metabolism
2.
Genome ; 46(4): 707-15, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12897877

ABSTRACT

Sequence analysis of a cDNA encoding dihydrofolate reductase (DHFR) from a selected methotrexate-resistant Drosophila melanogaster cell line (S3MTX) revealed a substitution of Gln for Leu at position 30. Although the S3MTX cells were approximately 1000 fold more resistant to methotrexate (MTX), the karyotype was similar to the parental line and did not show elongated chromosomes. Furthermore, kinetic analysis of the recombinant enzyme showed a decreased affinity for MTX by the mutant DHFR. To determine if the resistance phenotype could be attributed to the mutant allele, Drosophila Dhfr cDNAs isolated from wild type and S3MTX cells were expressed in Chinese hamster ovary (CHO) cells lacking endogenous DHFR. The heterologous insect DHFRs were functional in transgenic clonal cell lines, showing approximately 400-fold greater MTX resistance in the cell line transfected with the mutant Dhfr than the wild type Dhfr. Resistance to other antifolates in the CHO cells was consistent with the drug sensitivities seen in the respective Drosophila cell lines. ELevated Levels of Dhfr transcript and DHFR in transgenic CHO cells bearing the mutant cDNA were not seen. Taken together, these results demonstrate that a single substitution in Drosophila DHFR alone can confer Levels of MTX resistance comparable with that observed after considerable gene amplification in mammalian cells.


Subject(s)
Drosophila/genetics , Drug Resistance/genetics , Methotrexate/metabolism , Tetrahydrofolate Dehydrogenase/genetics , Animals , CHO Cells , Cricetinae , Drosophila/enzymology , Gene Transfer Techniques , Kinetics , Point Mutation , Tetrahydrofolate Dehydrogenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...