Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Res Rep Health Eff Inst ; (214): 1-41, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38286761

ABSTRACT

INTRODUCTION: Early ecological studies have suggested a link between air pollution and Coronavirus Diseases 2019 (COVID-19); however, the evidence from individual-level prospective cohort studies is still sparse. Here, we have examined, in a general population, whether long-term exposure to air pollution is associated with the risk of contracting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and developing severe COVID-19, resulting in hospitalization or death and who is most susceptible. We also examined whether long-term exposure to air pollution is associated with hospitalization or death due to COVID-19 in those who have tested positive for SARS-CoV-2. METHODS: We included all Danish residents 30 years or older who resided in Denmark on March 1, 2020. and followed them in the National COVID-19 Surveillance System until first positive test (incidence), COVID-19 hospitalization, or death until April 26, 2021. We estimated mean levels of nitrogen dioxide (NO2), particulate matter with an aerodynamic diameter <2.5 µm (PM2.5), black carbon (BC), and ozone (O3) at cohort participants' residence in 2019 by the Danish Eulerian Hemispheric Model/Urban Background Model. We used Cox proportional hazard models to estimate the associations of air pollutants with COVID-19 incidence, hospitalization, and mortality adjusting for age, sex, and socioeconomic status (SES) at the individual and area levels. We examined effect modification by age, sex, SES (education, income, wealth, employment), and comorbidities with cardiovascular disease, respiratory disease, acute lower respiratory infections, diabetes, lung cancer, and dementia. We used logistic regression to examine association of air pollutants with COVID-19-related hospitalization or death among SARS-CoV-2 positive patients, adjusting for age, sex, individual- and area-level SES. RESULTS: Of 3,721,810 people, 138,742 were infected, 11,270 hospitalized, and 2,557 died from COVID-19 during 14 months of follow-up. We detected strong positive associations with COVID-19 incidence, with hazard ratio (HR) and 95% confidence interval (CI) of 1.10 (CI: 1.05-1.14) per 0.5-µg/m3 increase in PM2.5 and 1.18 (CI: 1.14-1.23) per 3.6-µg/m3 increase in NO2. For COVID-19 hospitalizations and for COVID-19 deaths, corresponding HRs and 95% CIs were 1.09 (CI: 1.01-1.17) and 1.19 (CI: 1.12-1.27), respectively for PM2.5, and 1.23 (CI: 1.04-1.44) and 1.18 (CI: 1.03-1.34), respectively for NO2. We also found strong positive and statistically significant associations with BC and negative associations with O3. Associations were strongest in those aged 65 years old or older, participants with the lowest SES, and patients with chronic cardiovascular, respiratory, metabolic, lung cancer, and neurodegenerative disease. Among 138,742 individuals who have tested positive for SARS-Cov-2, we detected positive association with COVID-19 hospitalizations (N = 11,270) with odds ratio and 95% CI of 1.04 (CI: 1.01- 1.08) per 0.5-µg/m3 increase in PM2.5 and 1.06 (CI: 1.01-1.12) per 3.6-µg/m3 increase in NO2, but no association with PM with an aerodynamic diameter <10 µm (PM10), BC, or O3, and no association between any of the pollutants and COVID-19 mortality (N = 2,557). CONCLUSIONS: This large nationwide study provides strong new evidence in support of association between long-term exposure to air pollution and COVID-19.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Cardiovascular Diseases , Lung Neoplasms , Neurodegenerative Diseases , Humans , Aged , Nitrogen Dioxide/toxicity , Prospective Studies , Environmental Exposure/adverse effects , Environmental Exposure/analysis , COVID-19/epidemiology , SARS-CoV-2 , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollutants/toxicity , Air Pollutants/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis , Incidence , Denmark/epidemiology
2.
Environ Pollut ; 294: 118631, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34871646

ABSTRACT

Ultrafine particles (UFP), harmful to human health, are emitted at high levels from motorized traffic. Bicycle commuting is increasingly encouraged to reduce traffic emissions and increase physical activity, but higher breathing rates increase inhaled UFP concentrations while in traffic. We assessed exposure to UFP while cycling along a fixed 8.5 km inner-city route in Copenhagen, on weekdays over six weeks (from September to October 2020), during morning and afternoon rush-hour, as well as morning non-rush-hour, traffic time periods starting from 07:45, 15:45, and 09:45 h, respectively. Continuous measurements were made (each second) of particle number concentration (PNC) and location. PNC levels were summarized and compared across time periods. We used generalized additive models to adjust for meteorological factors, weekdays and trends. A total of 61 laps were completed, during 28 days (∼20 per time period). Overall mean PNC was 18,149 pt/cm3 (range 256-999,560 pt/cm3) with no significant difference between morning rush-hour (18003 pt/cm3), afternoon rush-hour (17560 pt/cm3) and late morning commute (17560 pt/cm3) [p = 0.85]. There was substantial spatial variation of UFP exposure along the route with highest PNC levels measured at traffic intersections (∼38,000-42000 pt/cm3), multiple lane roads (∼38,000-40000 pt/cm3) and construction sites (∼44,000-51000 pt/cm3), while lowest levels were measured at smaller streets, areas with open built environment (∼12,000 pt/cm3), as well as at a bus-only zone (∼15,000 pt/cm3). UFP exposure in inner-city Copenhagen did not differ substantially when bicycling in either rush-hour or non-rush-hour, or morning or afternoon, traffic time periods. UFP exposure varied substantially spatially, with highest concentrations around intersections, multiple lane roads, and construction sites. This suggests that exposure to UFP is not necessarily reduced by avoiding rush-hours, but by avoiding sources of pollution along the bicycling route.


Subject(s)
Air Pollutants , Particulate Matter , Air Pollutants/analysis , Bicycling , Denmark , Environmental Exposure/analysis , Environmental Monitoring , Humans , Particle Size , Particulate Matter/analysis , Transportation , Vehicle Emissions/analysis
3.
Sci Total Environ ; 791: 148301, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34412377

ABSTRACT

Ultrafine particles (UFP; particulate matter <0.1 µm diameter) emitted from motorized traffic may be highly detrimental to health. Active mobility (walking, bicycling) is increasingly encouraged as a way to reduce traffic congestion and increase physical activity levels. However, it has raised concerns of increased exposure to UFP, due to increased breathing rates in traffic microenvironments, immediately close to their source. The recent Coronavirus Disease 2019 (COVID-19) societal closures reduced commuting needs, allowing a natural experiment to estimate contributions from motorized traffic to UFP exposure while walking or bicycling. From late-March to mid-July 2020, UFP was repeatedly measured while walking or bicycling, capturing local COVID-19 closure ('Phase 0') and subsequent phased re-opening ('Phase 1', '2', '2.1' & '3'). A DiSCmini continuously measured particle number concentration (PNC) in the walker/bicyclist's breathing zone. PNC while walking or bicycling was compared across phased re-openings, and the effect of ambient temperature, wind speed and direction was determined using regression models. Approximately 40 repeated 20-minute walking and bicycling laps were made over 4 months during societal re-opening phases related to the COVID-19 pandemic (late-March to mid-July 2020) in Copenhagen. Highest median PNC exposure of both walking (13,170 pt/cm3, standard deviation (SD): 3560 pt/cm3) and bicycling (21,477 pt/cm3, SD: 8964) was seen during societal closures (Phase 0) and decreased to 5367 pt/cm3 (SD: 2949) and 8714 pt/cm3 (SD: 4309) in Phase 3 of re-opening. These reductions in PNC were mainly explained by meteorological conditions, with most of the deviation explained by wind speed (14-22%) and temperature (10-13%). Highest PNC was observed along major roads and intersections. In conclusion, we observed decreases in UFP exposure while walking and bicycling during societal re-opening phases related to the COVID-19 pandemic, due largely to meteorological factors (e.g., wind speed and temperature) and seasonal variations in UFP levels.


Subject(s)
COVID-19 , Particulate Matter , Bicycling , Denmark , Humans , Pandemics , Particle Size , Particulate Matter/analysis , SARS-CoV-2 , Walking
4.
Eur J Public Health ; 26(4): 717-23, 2016 08.
Article in English | MEDLINE | ID: mdl-26748099

ABSTRACT

BACKGROUND: Public bicycle-sharing initiatives can act as health enhancement strategies among urban populations. The aim of the study was to determine which attitudes and perceptions of behavioural control toward cycling and a bicycle-sharing system distinguish commuters with a different adherence to bicycle commuting. METHODS: The recruitment process was conducted in 40 random points in Barcelona from 2011 to 2012. Subjects completed a telephone-based questionnaire including 27 attitude and perception statements. Based on their most common one-way commute trip and willingness to commute by bicycle, subjects were classified into Private Bicycle (PB), public bicycle or Bicing Bicycle (BB), Willing Non-bicycle (WN) and Non-willing Non-bicycle (NN) commuters. After reducing the survey statements through principal component analysis, a multinomial logistic regression model was obtained to evaluate associations between attitudinal and commuter sub-groups. RESULTS: We included 814 adults in the analysis [51.6% female, mean (SD): age 36.6 (10.3) years]. BB commuters were 2.0 times [95% confidence interval (CI) = 1.1-3.7] less likely to perceive bicycle as a quick, flexible and enjoyable mode compared to PB. BB, WN and NN were 2.5 (95% CI = 1.46-4.24), 2.6 (95% CI = 1.53-4.41) and 2.3 times (95% CI = 1.30-4.10) more likely to perceive benefits of using public bicycles (bicycle maintenance and parking avoidance, low cost and no worries about theft and vandalism) than did PB. CONCLUSION: Willing non-bicycle and public-bicycle commuters had more favourable perception toward public-shared bicycles compared to private cyclists. Hence, public bicycles may be the impetus for those willing to start bicycle commuting, thereby increasing physical activity levels.


Subject(s)
Bicycling/psychology , Bicycling/statistics & numerical data , Health Knowledge, Attitudes, Practice , Transportation/methods , Transportation/statistics & numerical data , Adult , Female , Humans , Male , Spain , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL
...