Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(2): 1573-1581, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38157489

ABSTRACT

Fostered by the top power conversion efficiencies (PCEs) of lab-scale devices, industrialization of perovskite solar cells is underway. Nevertheless, the intrinsically poor stability of these materials still represents a major concern. Herein, inspired by Nature, the use of ß-carotene in perovskite solar cells is proposed to mimic its role as a protective pigment, as occurs in natural photosynthesis. Laser-mediated photostability (LMPS) assessment, Fourier-transform infrared spectra analysis acquired in attenuate total reflectance (ATR-FTIR), spectroscopy ellipsometry (SE), and time-resolved photoluminescence (TRPL) measurements under stress conditions prove that the inclusion of a thin ß-carotene interlayer promotes a high improvement in the photostability of the perovskite films against photooxidation. Importantly, this is accompanied by an improvement of the solar cell PCE that approaches 20% efficiency with no hysteresis, which is among the highest values reported for a mixed halide (I-Br) perovskite with a band gap of 1.74 eV, relevant for coupling with silicon in tandem cells.

2.
Cell Rep Phys Sci ; 4(1): 101214, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-37292086

ABSTRACT

There is increasing interest in the role of metal halide perovskites for heterogeneous catalysis. Here, we report a Ge-based 2D perovskite material that shows intrinsic water stability realized through organic cation engineering. Incorporating 4-phenylbenzilammonium (PhBz) we demonstrate, by means of extended experimental and computational results, that PhBz2GeBr4 and PhBz2GeI4 can achieve relevant air and water stability. The creation of composites embedding graphitic carbon nitride (g-C3N4) allows a proof of concept for light-induced hydrogen evolution in an aqueous environment by 2D Ge-based perovskites thanks to the effective charge transfer at the heterojunction between the two semiconductors.

3.
Chempluschem ; 86(10): 1442-1450, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34648239

ABSTRACT

The industrialization of perovskite solar cells relies on solving intrinsic-to-material issues. To reach record efficiencies perovskite deposition needs to be finely adjusted by multi-step processes, in a humidity free glove-box environment and by means of hardly scalable techniques often associated with toxic solvents and anti-solvent dripping/bath. Herein, the use of polymeric material is proposed to deposit perovskite layers with easy processability. To the scope, a starch-polymer/perovskite composite is developed to suit slot-die coating technique requirement, allowing the deposition of hybrid halide perovskite material in a single straightforward step without the use of toxic solvents, and in uncontrolled humid environment (RH up to 70 %). The starch-polymer increases the viscosity of the perovskite precursor solutions and delays the perovskite crystallization that results in the formation of perovskite films at mild temperature (60 °C) with good morphology. These innovative inks enables the fabrication of flexible solar cells with p-i-n configuration featured by a power conversion efficiency higher than 3 %. . Overall, this approach can be exploited in the future to massively reduce perovskite manufacturing costs related to keeping the entire fabrication line at high-temperature and under nitrogen or dry conditions.

4.
Nanomaterials (Basel) ; 11(7)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209511

ABSTRACT

Organic-inorganic hybrid perovskite materials have raised great interest in recent years due to their excellent optoelectronic properties, which promise stunning improvements in photovoltaic technologies. Moreover, two-dimensional layered materials such as graphene, its derivatives, and transition metal dichalcogenides have been extensively investigated for a wide range of electronic and optoelectronic applications and have recently shown a synergistic effect in combination with hybrid perovskite materials. Here, we report on the inclusion of liquid-phase exfoliated molybdenum disulfide nanosheets into different perovskite precursor solutions, exploring their influence on final device performance. We compared the effect of such additives upon the growth of diverse perovskites, namely CH3NH3PbI3 (MAPbI3) and triple-cation with mixed halides Csx (MA0.17FA0.83)(1-x)Pb (I0.83Br0.17)3 perovskite. We show how for the referential MAPbI3 materials the addition of the MoS2 additive leads to the formation of larger, highly crystalline grains, which result in a remarkable 15% relative improvement in power conversion efficiency. On the other hand, for the mixed cation-halide perovskite no improvements were observed, confirming that the nucleation process for the two materials is differently influenced by the presence of MoS2.

5.
Nanotechnology ; 32(26): 265707, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33843660

ABSTRACT

The use of polymeric additives supporting the growth of hybrid halide perovskites has proven to be a successful approach aiming at high quality active layers targeting optoelectronic exploitation. A detailed description of the complex process involving the self-assembly of the precursors into the perovskite crystallites in presence of the polymer is, however, still missing. Here we take starch:CH3NH3PbI3 (MAPbI3) as example of highly performing composite, both in solar cells and light emitting diodes, and study the film formation process through differential scanning calorimetry and in situ time-resolved grazing incidence wide-angle x-ray scattering, performed during spin coating. These measurements reveal that starch beneficially influences the nucleation and growth of the perovskite precursor phase, leading to improved structural properties of the resulting film which turns into higher stability towards environmental conditions.

6.
Nanomaterials (Basel) ; 11(2)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572127

ABSTRACT

Metal halide perovskites (MHPs) exploitation represents the next big frontier in photovoltaic technologies. However, the extraordinary optoelectronic properties of these materials also call for alternative utilizations, such as in solar-driven photocatalysis, to better address the big challenges ahead for eco-sustainable human activities. In this contest the recent reports on MHPs structures, especially those stable in aqueous solutions, suggest the exciting possibility for efficient solar-driven perovskite-based hydrogen (H2) production. In this minireview such works are critically analyzed and classified according to their mechanism and working conditions. We focus on lead-free materials, because of the environmental issue represented by lead containing material, especially if exploited in aqueous medium, thus it is important to avoid its presence from the technology take-off. Particular emphasis is dedicated to the materials composition/structure impacting on this catalytic process. The rationalization of the distinctive traits characterizing MHPs-based H2 production could assist the future expansion of the field, supporting the path towards a new class of light-driven catalysts working in aqueous environments.

7.
ACS Appl Energy Mater ; 4(10): 11194-11203, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-35928767

ABSTRACT

Herein, we focus on improving the long-term chemical and thermomechanical stability of perovskite solar cells (PSCs), two major challenges currently limiting their commercial deployment. Our strategy incorporates a long-chain starch polymer into the perovskite precursor. The starch polymer confers multiple beneficial effects by forming hydrogen bonds with the methylammonium iodide precursor, templating perovskite growth that results in a compact and homogeneous film deposited in a simple one-step coating (antisolvent-free). The inclusion of starch in the methylammonium lead iodide films strongly improves their thermomechanical and environmental stability while maintaining a high photovoltaic performance. The fracture energy (G c) of the film is increased to above 5 J/m2 by creating a nanocomposite that provides intrinsic reinforcement at grain boundaries. Additionally, improved optoelectronic properties achieved with the starch polymer enable good photostability of the active layer and enhanced resistance to thermal cycling.

8.
Polymers (Basel) ; 12(3)2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32121560

ABSTRACT

The aim of this work is the development and characterization of biodegradable thermoplastic recycled carbon ashes/maize starch (TPAS) composite films for agricultural applications. A proper plasticizer, that is, glycerol, was added to a commercial maize starch in an amount of 35 wt.%. Carbon-based ashes were produced by the biomass pyro-gasification plant CMD ECO 20, starting from lignocellulosic wastes. The ashes were added to glycerol and maize native starch at different amounts ranging from 7 wt. % to 21 wt.%. The composite was mixed at 130 °C for 10 min and then molded. The effect of the different amounts of carbon based ashes on the thermal and physical-mechanical properties of the composite was assessed by using several techniques, such as rheology, wide- angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), moisture absorption, degradation and mechanical tests. The presence of the carbon waste ashes allows to improve thermal and durability performances of the thermoplastic starch (TPS) films. It reduces the water absorption of starch matrix and strongly decreases the deterioration of starch, independently from fillers amount, enhancing the lifetime of the TPS films in outdoor conditions. In addition, the waste carbon ashes/maize starch films present an advantage in comparison to those of neat starch; it can biodegrade, releasing the plant nutrients contained in the ashes into the soil. In conclusion, this approach for recycling carbon waste ashes increases the efficiency of industrial waste management, along with a reduction of its impact on the environment.

9.
ACS Appl Mater Interfaces ; 12(16): 18431-18436, 2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32155327

ABSTRACT

Compositional engineering has been a strong tool to improve the quality of the perovskite materials and, in turn, the reproducibility of the solar cells. However, the control over the active layer uniformity, one of the most important requirements for the obtainment of efficient devices, is still a weak point of perovskite solar cells (PSCs) manufacturing. Here, we develop an approach to grow a uniform mixed cation perovskite layer, foreseeing its implementation in inverted solar cells endowing organic transporting layers, through the addition of a stoiochiometric amount of tropolone as chelating agent for the lead. Thanks to low melting and boiling temperatures, tropolone is present in the system only during the colloidal liquid phase, leaving the film during its formation; this unique characteristic promotes the obtainment of ideal perovskite surface morphologies and an increased short circuit current of photovoltaic devices. A maximum power conversion efficiency of 20% was obtained, with a 25% increase with respect to the reference.

10.
Nanomaterials (Basel) ; 9(11)2019 Nov 16.
Article in English | MEDLINE | ID: mdl-31744047

ABSTRACT

The performances of organometallic halide perovskite-based solar cells severely depend on the device architecture and the interface between each layer included in the device stack. In particular, the interface between the charge transporting layer and the perovskite film is crucial, since it represents both the substrate where the perovskite polycrystalline film grows, thus directly influencing the active layer morphology, and an important site for electrical charge extraction and/or recombination. Here, we focus on engineering the interface between a perovskite-polymer nanocomposite, recently developed by our group, and different commonly employed polymeric hole transporters, namely PEDOT: PSS [poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)], PEDOT, PTAA [poly(bis 4-phenyl}{2,4,6-trimethylphenyl}amine)], Poly-TPD [Poly(N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)-benzidine] Poly-TPD, in inverted planar perovskite solar cell architecture. The results show that when Poly-TPD is used as the hole transfer material, perovskite film morphology improved, suggesting an improvement in the interface between Poly-TPD and perovskite active layer. We additionally investigate the effect of the Molecular Weight (MW) of Poly-TPD on the performance of perovskite solar cells. By increasing the MW, the photovoltaic performances of the cells are enhanced, reaching power conversion efficiency as high as 16.3%.

11.
ACS Nano ; 13(9): 10711-10716, 2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31469265

ABSTRACT

Sources of single photons are a fundamental brick in the development of quantum information technologies. Great efforts have been made so far in the realization of reliable, highly efficient, and on demand quantum sources that could show an easy integration with quantum devices. This has recently culminated in the use of solid state quantum dots as promising candidates for future sources of quantum technologies. However, some challenges, like their complex fabrication, random distribution, and difficult integrability with silicon technology, could hinder their broad application, making necessary the study of alternative systems. In this work, we clearly demonstrate single photon emission from quantum dots formed in nonstoichiometric bulk perovskites. Their simple growing procedures, exceptional stability under constant illumination, easy control of their optical properties, as well as ease of integrability make these materials very interesting candidates for the development of quantum light sources in the near-infrared.

12.
Nanomaterials (Basel) ; 9(4)2019 Apr 09.
Article in English | MEDLINE | ID: mdl-30970624

ABSTRACT

The high efficiencies (>22%) reached by perovskite-based optoelectronic devices in a very short period, demonstrates the great potential and tunability of this material. The current challenge lies in translating such efficiencies to commercially feasible forms produced through industrial fabrication methods. Herein, a novel first step towards the processability of starch-perovskite inks, developed in our previous work, is investigated, by using inkjet printing technology. The tunability of the viscosity of the starch-perovskite-based inks allows the selection of suitable concentrations to be used as printable inks. After exploration of several printing parameters, thick and opaque starch-perovskite nanocomposite films were obtained, showing interesting morphological and optical properties. The results obtained in this work underline the potential and versatility of our approach, opening the possibility to explore and optimize, in the future, further large-scale deposition methods towards fully printed and stable perovskite devices.

13.
Sci Rep ; 8(1): 15496, 2018 Oct 19.
Article in English | MEDLINE | ID: mdl-30341317

ABSTRACT

Herein, an insulating biopolymer is exploited to guide the controlled formation of micro/nano-structure and physical confinement of α-δ mixed phase crystalline grains of formamidinium lead iodide (FAPbI3) perovskite, functioning as charge carrier concentrators and ensuring improved radiative recombination and photoluminescence quantum yield (PLQY). This composite material is used to build highly efficient near-infrared (NIR) FAPbI3 Perovskite light-emitting diodes (PeLEDs) that exhibit a high radiance of 206.7 W/sr*m2, among the highest reported for NIR-PeLEDs, obtained at a very high current density of 1000 mA/cm2, while importantly avoiding the efficiency roll-off effect. In depth photophysical characterization allows to identify the possible role of the biopolymer in i) enhancing the radiative recombination coefficient, improving light extraction by reducing the refractive index, or ii) enhancing the effective optical absorption because of dielectric scattering at the polymer-perovskite interfaces. Our study reveals how the use of insulating matrixes for the growth of perovskites represents a step towards high power applications of PeLEDs.

14.
Chem Sci ; 9(12): 3200-3208, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29732103

ABSTRACT

The evolution from solvated precursors to hybrid halide perovskite films dictates most of the photophysical and optoelectronic properties of the final polycrystalline material. Specifically, the complex equilibria and the importantly different solubilities of lead iodide (PbI2) and methylammonium iodide (MAI) induce inhomogeneous crystal growth, often leading to a defect dense film showing non-optimal optoelectronic properties and intrinsic instability. Here, we explore a supramolecular approach based on the use of cyclodextrins (CDs) to modify the underlying solution chemistry. The peculiar phenomenon demonstrated is a tunable complexation between different CDs and MA+ cations concurrent to an out of cage PbI2 intercalation, representing the first report of a connection between the solvation equilibria of the two perovskite precursors. The optimal conditions in terms of CD cavity size and polarity translate to a neat enhancement of PbI2 solubility in the reaction media, leading to an equilibration of the availability of the precursors in solution. The macroscopic result of this is an improved nucleation process, leading to a perovskite material with higher crystallinity, better optical properties and improved moisture resistance. Remarkably, the use of CDs presents a great potential for a wide range of device-related applications, as well as for the development of tailored composite materials.

15.
Phys Chem Chem Phys ; 20(16): 11396-11404, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29645032

ABSTRACT

Thanks to their high stability, good optoelectronic and extraordinary electrochromic properties, tungsten oxides are among the most valuable yet underexploited materials for energy conversion applications. Herein, colloidal one-dimensional carved nanocrystals of reduced tungsten trioxide (WO3-x) are successfully integrated, for the first time, as a hole-transporting layer (HTL) into CH3NH3PbI3 perovskite solar cells with a planar inverted device architecture. Importantly, the use of such preformed nanocrystals guarantees the facile solution-cast-only deposition of a homogeneous WO3-x thin film at room temperature, allowing achievement of the highest power conversion efficiency ever reported for perovskite solar cells incorporating raw and un-doped tungsten oxide based HTL.

16.
Nanoscale ; 10(7): 3198-3211, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29379917

ABSTRACT

The emission of light in two-dimensional (2-D) layered hybrid organic lead halide perovskites, namely (R-NH3)2PbX4, can be effectively tuned using specific building blocks for the perovskite formation. Herein this behaviour is combined with a non-covalent graphene functionalization allowing excellent selectivity and spatial resolution of the perovskite film growth, promoting the formation of hybrid 2-D perovskite : graphene heterostructures with uniform coverage of up to centimeter scale graphene sheets and arbitrary shapes down to 5 µm. Using cryo-Raman microspectroscopy, highly resolved spectra of the perovskite phases were obtained and the Raman mapping served as a convenient spatially resolved technique for monitoring the distribution of the perovskite and graphene constituents on the substrate. In addition, the stability of the perovskite phase with respect to the thermal variation was inspected in situ by X-ray diffraction. Finally, time-resolved photoluminescence characterization demonstrated that the optical properties of the perovskite films grown on graphene are not hampered. Our study thus opens the door to smart fabrication routes for (opto)-electronic devices based on 2-D perovskites in contact with graphene with complex architectures.

17.
Nanotechnology ; 28(17): 174001, 2017 Apr 28.
Article in English | MEDLINE | ID: mdl-28367836

ABSTRACT

In this work glucose (G), α-cyclodextrin (α-CD) and sodium salt of carboxymethyl cellulose (CMCNa) are used as dispersing agents for graphene oxide (GO), exploring the influence of both saccharide units and geometric/steric hindrance on the rheological, thermal, wettability and electrochemical properties of a GO/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) nanocomposite. By acting on the saccharide-based additives, we can modulate the rheological, thermal, and wettability properties of the GO/PEDOT:PSS nanocomposite. Firstly, the influence of all the additives on the rheological behaviour of GO and PEDOT:PSS was investigated separately in order to understand the effect of the dispersing agent on both the components of the ternary nanocomposite, individually. Subsequently, steady shear and dynamic frequency tests were conducted on all the nanocomposite solutions, characterized by thermal, wettability and morphological analysis. Finally, the electrochemical properties of the GO/PEDOT composites with different dispersing agents for supercapacitors were investigated using cyclic voltammetry (CV). The CV results revealed that GO/PEDOT with glucose exhibited the highest specific capacitance among the systems investigated.

18.
Sci Rep ; 7: 44629, 2017 03 20.
Article in English | MEDLINE | ID: mdl-28317883

ABSTRACT

Metal-halide perovskite solar cells rival the best inorganic solar cells in power conversion efficiency, providing the outlook for efficient, cheap devices. In order for the technology to mature and approach the ideal Shockley-Queissier efficiency, experimental tools are needed to diagnose what processes limit performances, beyond simply measuring electrical characteristics often affected by parasitic effects and difficult to interpret. Here we study the microscopic origin of recombination currents causing photoconversion losses with an all-optical technique, measuring the electron-hole free energy as a function of the exciting light intensity. Our method allows assessing the ideality factor and breaks down the electron-hole recombination current into bulk defect and interface contributions, providing an estimate of the limit photoconversion efficiency, without any real charge current flowing through the device. We identify Shockley-Read-Hall recombination as the main decay process in insulated perovskite layers and quantify the additional performance degradation due to interface recombination in heterojunctions.

19.
J Phys Chem Lett ; 7(21): 4322-4334, 2016 Nov 03.
Article in English | MEDLINE | ID: mdl-27739681

ABSTRACT

Incubating in the rise of perovskite photovoltaic era, the advances in material design encourage further promising optoelectronic exploitations. Here, we evaluate halide perovskite envisioning light-emitting applications, with a particular focus to the role that this material can effectively play in the field, discussing advantages and limitations with respect to state of art competing players. Specific benefits derive from the use of low dimensional and nanostructured perovskites, marginally exploited in photovoltaic devices, allowing for a tuning of the excited states properties and for the obtainment of intrinsic resonating structures. Thanks to these unique properties, halide perovskite ensure a great potential for the development of high-power applications, such as lighting and lasing.

20.
ACS Appl Mater Interfaces ; 8(41): 27966-27973, 2016 Oct 19.
Article in English | MEDLINE | ID: mdl-27632080

ABSTRACT

The covalent functionalization of (7,6)-enriched single-walled carbon nanotubes (SWCNTs) with oligophenylenevinylene (OPV) moieties terminating with a dimethylamino group is proposed as an efficient way to enhance the affinity of CNTs with spiro-MeOTAD in perovskite-based solar cells. The evidence of SWCNTs functionalization and the degree of OPV substitution on SWCNTs are established from TGA, XPS, TEM, and Raman techniques. Our tailored doping materials afford photovoltaic performances in line with conventional Li-doped spiro-MeOTAD, showing at the same time a significantly improved chemical stability of the perovskite component over time. Furthermore, the comparison of the photovoltaic performances with those obtained with nonfunctionalized SWCNTs suggest that the presence of the organic appends ensures highly reproducible PV performances. These results demonstrate the suitability of this functionalized SWCNT material as a valid doping agent for spiro-MeOTAD, representing a viable alternative to the conventional Li salt.

SELECTION OF CITATIONS
SEARCH DETAIL
...