Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Hypertension ; 80(10): 2196-2208, 2023 10.
Article in English | MEDLINE | ID: mdl-37593894

ABSTRACT

BACKGROUND: AngII (angiotensin II)-dependent hypertension causes comparable elevations of blood pressure (BP), aldosterone levels, and renal ENaC (epithelial Na+ channel) activity in male and female rodents. Mineralocorticoid receptor (MR) antagonism has a limited antihypertensive effect associated with insufficient suppression of renal ENaC in male rodents with AngII-hypertension. While MR blockade effectively reduces BP in female mice with salt-sensitive and leptin-induced hypertension, MR antagonism has not been studied in female rodents with AngII-hypertension. We hypothesize that overstimulation of renal MR signaling drives redundant ENaC-mediated Na+ reabsorption and BP increase in female rats with AngII-hypertension. METHODS: We employ a combination of physiological, pharmacological, biochemical, and biophysical approaches to compare the effect of MR inhibitors on BP and ENaC activity in AngII-infused male and female Sprague Dawley rats. RESULTS: MR blockade markedly attenuates AngII-hypertension in female rats but has only a marginal effect in males. Spironolactone increases urinary sodium excretion and urinary sodium-to-potassium ratio in AngII-infused female, but not male, rats. The expression of renal MR and HSD11ß2 (11ß-hydroxysteroid dehydrogenase type 2) that determines the availability of MR to aldosterone is significantly higher in AngII-infused female rats than in males. ENaC activity is ≈2× lower in spironolactone-treated AngII-infused female rats than in males. Reduced ENaC activity in AngII-infused female rats on spironolactone correlates with increased interaction with ubiquitin ligase Nedd4-2 (neural precursor cell expressed developmentally down-regulated protein 4-2), targeting ENaC for degradation. CONCLUSIONS: MR-ENaC axis is the primary determinant of excessive renal sodium reabsorption and an attractive antihypertensive target in female rats with AngII-hypertension, but not in males.


Subject(s)
Hypertension , Hypotension , Female , Male , Rats , Mice , Animals , Antihypertensive Agents , Mineralocorticoid Receptor Antagonists/pharmacology , Aldosterone/pharmacology , Spironolactone , Blood Pressure , Rats, Sprague-Dawley , Diuretics , Hypertension/chemically induced , Hypertension/drug therapy , Sodium
SELECTION OF CITATIONS
SEARCH DETAIL
...