Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Vector Borne Dis ; 61(1): 90-100, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38648410

ABSTRACT

BACKGROUND OBJECTIVES: Widespread pyrethroid resistance and plastic-feeding behaviour of most malaria vectors across Africa threaten the efficacy of current insecticide-based vector control interventions like Insecticide-Treated Nets (ITNs) and Indoor Residual Spraying (IRS). This study examined the larvicidal activity ofMorinda citrifolia against Anopheles gambiae larvae and the repellent properties of Morinda citrifolia (Noni), Moringa oleifera (Moringa), and Ocimum basilicum (Basil) as complementary vector control tools against Anopheles gambiae sensu lato (s.l.). METHODS: Noni, Basil, and Moringa oil extracts were obtained with the extraction techniques; Soxhlet, steam distillation and maceration respectively, using hexane and ethanol. The effectiveness of the extracts was assessed using the WHO standard larval susceptibility bioassay and guidelines for repellent efficacy. Following bioassays, effective doses (ED) and lethal concentrations (LC) were determined. Gas Chromatography-Mass Spectroscopy analysis was performed to identify the bioactive chemical components of the extracts of Moringa oleifera and Ocimum basilicum. RESULTS: Emulsified Morinda citrifolia seed oil had LC50=68.3, LC90=130.9 and LC99.9=222.5, and ED99. 9=308.3%v/v, the ethanolic extract of Moringa oleifera leaves had ED99.9= 1.25g/ml, and essential oil of Ocimum basilicum leaves had ED99.9=0.28g/ml against Anopheles gambiae. INTERPRETATION CONCLUSION: The results obtained indicated that seed oil of Morinda citrifolia, essential oil of Ocimum basilicum, and crude extract of Moringa oleifera have repellent activity against An. gambiae s.l. The complete protection time (CPT) of Morinda citrifolia, Moringa oleifera, and Ocimum basilicum was 120 min, 72 min and 84 min at ED99.9 respectively. Morinda citrifolia oil exhibited larvicidal effects against the larvae of An. gambiae s.l. The results provide valuable information for the use of the plants as biocides.


Subject(s)
Anopheles , Insect Repellents , Insecticides , Larva , Mosquito Control , Ocimum basilicum , Plant Extracts , Animals , Anopheles/drug effects , Larva/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Insect Repellents/pharmacology , Ocimum basilicum/chemistry , Insecticides/pharmacology , Mosquito Control/methods , Moringa oleifera/chemistry , Mosquito Vectors/drug effects , Morinda/chemistry , Gas Chromatography-Mass Spectrometry , Biological Assay , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry
2.
Med Vet Entomol ; 38(2): 138-147, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38469658

ABSTRACT

Microplastics (plastic particles <5 mm) permeate aquatic and terrestrial ecosystems and constitute a hazard to animal life. Although much research has been conducted on the effects of microplastics on marine and benthic organisms, less consideration has been given to insects, especially those adapted to urban environments. Here, we provide a perspective on the potential consequences of exposure to microplastics within typical larval habitat on mosquito biology. Mosquitoes represent an ideal organism in which to explore the biological effects of microplastics on terrestrial insects, not least because of their importance as an infectious disease vector. Drawing on evidence from other organisms and knowledge of the mosquito life cycle, we summarise some of the more plausible impacts of microplastics including physiological, ecotoxicological and immunological responses. We conclude that although there remains little experimental evidence demonstrating any adverse effect on mosquito biology or pathogen transmission, significant knowledge gaps remain, and there is now a need to quantify the effects that microplastic pollution could have on such an important disease vector.


Subject(s)
Culicidae , Microplastics , Animals , Microplastics/toxicity , Culicidae/drug effects , Culicidae/physiology , Mosquito Vectors/drug effects , Mosquito Vectors/physiology , Larva/growth & development , Larva/drug effects , Water Pollutants, Chemical/toxicity
3.
Parasit Vectors ; 17(1): 16, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195546

ABSTRACT

BACKGROUND: A significant decrease in malaria morbidity and mortality has been attained using long-lasting insecticide-treated nets and indoor residual spraying. Selective pressure from these control methods influences changes in vector bionomics and behavioural pattern. There is a need to understand how insecticide resistance drives behavioural changes within vector species. This study aimed to determine the spatio-temporal dynamics and biting behaviour of malaria vectors in different ecological zones in Ghana in an era of high insecticide use for public health vector control. METHODS: Adult mosquitoes were collected during the dry and rainy seasons in 2017 and 2018 from five study sites in Ghana in different ecological zones. Indoor- and outdoor-biting mosquitoes were collected per hour from 18:00 to 06:00 h employing the human landing catch (HLC) technique. Morphological and molecular species identifications of vectors were done using identification keys and PCR respectively. Genotyping of insecticide-resistant markers was done using the TaqMan SNP genotyping probe-based assays. Detection of Plasmodium falciparum sporozoites was determined using PCR. RESULTS: A total of 50,322 mosquitoes belonging to four different genera were collected from all the study sites during the sampling seasons in 2017 and 2018. Among the Anophelines were Anopheles gambiae s.l. 93.2%, (31,055/33,334), An. funestus 2.1%, (690/33,334), An. pharoensis 4.6%, (1545/33,334), and An. rufipes 0.1% (44/33,334). Overall, 76.4%, (25,468/33,334) of Anopheles mosquitoes were collected in the rainy season and 23.6%, (7866/33,334) in the dry season. There was a significant difference (Z = 2.410; P = 0.0160) between indoor-biting (51.1%; 15,866/31,055) and outdoor-biting An. gambiae s.l. (48.9%; 15,189/31,055). The frequency of the Vgsc-1014F mutation was slightly higher in indoor-biting mosquitoes (54.9%) than outdoors (45.1%). Overall, 44 pools of samples were positive for P. falciparum CSP giving an overall sporozoite rate of 0.1%. CONCLUSION: Anopheles gambiae s.l. were more abundant indoors across all ecological zones of Ghana. The frequency of G119S was higher indoors than outdoors from all the study sites, but with higher sporozoite rates in outdoor mosquitoes in Dodowa and Kpalsogu. There is, therefore, an urgent need for a supplementary malaria control intervention to control outdoor-biting mosquitoes.


Subject(s)
Anopheles , Insecticides , Malaria, Falciparum , Malaria , Adult , Humans , Animals , Anopheles/genetics , Malaria/prevention & control , Ghana , Insecticide Resistance/genetics , Insecticides/pharmacology , Mosquito Vectors/genetics , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control
4.
Malar J ; 23(1): 12, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195484

ABSTRACT

BACKGROUND: Clothianidin, an insecticide with a novel mode of action, has been deployed in the annual indoor residual spraying programme in northern Ghana since March 2021. To inform pragmatic management strategies and guide future studies, baseline data on local Anopheles gambiae sensu lato (s.l.) susceptibility to the clothianidin insecticide were collected in Kpalsogu, a village in the Northern region, Ghana. METHODS: Phenotypic susceptibility of An. gambiae mosquitoes to clothianidin was assessed using the World Health Organization (WHO) insecticide resistance monitoring bioassay. The WHO cone bioassays were conducted on mud and cement walls sprayed with Sumishield 50 wettable granules (WG) (with clothianidin active ingredient). Daily mortalities were recorded for up to 7 days to observe for delayed mortalities. Polymerase chain reaction (PCR) technique was used to differentiate the sibling species of the An. gambiae complex and also for the detection of knock down resistance genes (kdr) and the insensitive acetylcholinesterase mutation (ace-1). RESULTS: The WHO susceptibility bioassay revealed a delayed killing effect of clothianidin. Mosquitoes exposed to the cone bioassays for 5 min died 120 h after exposure. Slightly higher mortalities were observed in mosquitoes exposed to clothianidin-treated cement wall surfaces than mosquitoes exposed to mud wall surfaces. The kdr target-site mutation L1014F occurred at very high frequencies (0.89-0.94) across all vector species identified whereas the ace-1 mutation occurred at moderate levels (0.32-0.44). Anopheles gambiae sensu stricto was the most abundant species observed at 63%, whereas Anopheles arabiensis was the least observed at 9%. CONCLUSIONS: Anopheles gambiae s.l. mosquitoes in northern Ghana were susceptible to clothianidin. They harboured kdr mutations at high frequencies. The ace-1 mutation occurred in moderation. The results of this study confirm that clothianidin is an effective active ingredient and should be utilized in malaria vector control interventions.


Subject(s)
Anopheles , Insecticides , Malaria , Animals , Anopheles/genetics , Insecticides/pharmacology , Acetylcholinesterase , Ghana , Mosquito Vectors
5.
Curr Opin Insect Sci ; 60: 101110, 2023 12.
Article in English | MEDLINE | ID: mdl-37660835

ABSTRACT

Mosquito surveillance is essential to successfully control and eliminate mosquito-borne diseases. Yet, it is often done by numerous organizations with little collaboration, incomplete understanding of existing gaps, and limited long-term vision. There is a clear disconnect between entomological and epidemiological indices, with entomological data informing control efforts inadequately. Here, we discuss current mosquito surveillance practises across the heterogeneous disease landscape in Africa. We advocate for the development of mosquito surveillance strategic plans to increase the impact and functionality of mosquito surveillance. We urge for a proactive approach to set up centralized mosquito data systems under the custodian of national governments, focus on epidemiologically relevant mosquito data, and increase the robustness of mosquito surveillance using a more spatially explicit sampling design.


Subject(s)
Culicidae , Animals , Mosquito Control , Africa/epidemiology
6.
Parasit Vectors ; 16(1): 205, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37337221

ABSTRACT

BACKGROUND: Vector bionomics are important aspects of vector-borne disease control programs. Mosquito-biting risks are affected by environmental, mosquito behavior and human factors, which are important for assessing exposure risk and intervention impacts. This study estimated malaria transmission risk based on vector-human interactions in northern Ghana, where indoor residual spraying (IRS) and insecticide-treated nets (ITNs) have been deployed. METHODS: Indoor and outdoor human biting rates (HBRs) were measured using monthly human landing catches (HLCs) from June 2017 to April 2019. Mosquitoes collected were identified to species level, and Anopheles gambiae sensu lato (An. gambiae s.l.) samples were examined for parity and infectivity. The HBRs were adjusted using mosquito parity and human behavioral observations. RESULTS: Anopheles gambiae was the main vector species in the IRS (81%) and control (83%) communities. Indoor and outdoor HBRs were similar in both the IRS intervention (10.6 vs. 11.3 bites per person per night [b/p/n]; z = -0.33, P = 0.745) and control communities (18.8 vs. 16.4 b/p/n; z = 1.57, P = 0.115). The mean proportion of parous An. gambiae s.l. was lower in IRS communities (44.6%) than in control communities (71.7%). After adjusting for human behavior observations and parity, the combined effect of IRS and ITN utilization (IRS: 37.8%; control: 57.3%) on reducing malaria transmission risk was 58% in IRS + ITN communities and 27% in control communities with ITNs alone (z = -4.07, P < 0.001). However, this also revealed that about 41% and 31% of outdoor adjusted bites in IRS and control communities respectively, occurred before bed time (10:00 pm). The mean directly measured annual entomologic inoculation rates (EIRs) during the study were 6.1 infective bites per person per year (ib/p/yr) for IRS communities and 16.3 ib/p/yr for control communities. After considering vector survival and observed human behavior, the estimated EIR for IRS communities was 1.8 ib/p/yr, which represents about a 70% overestimation of risk compared to the directly measured EIR; for control communities, it was 13.6 ib/p/yr (16% overestimation). CONCLUSION: Indoor residual spraying significantly impacted entomological indicators of malaria transmission. The results of this study indicate that vector bionomics alone do not provide an accurate assessment of malaria transmission exposure risk. By accounting for human behavior parameters, we found that high coverage of ITNs alone had less impact on malaria transmission indices than combining ITNs with IRS, likely due to observed low net use. Reinforcing effective communication for behavioral change in net use and IRS could further reduce malaria transmission.


Subject(s)
Anopheles , Insecticides , Malaria , Animals , Humans , Ghana/epidemiology , Mosquito Vectors , Mosquito Control/methods , Malaria/epidemiology , Malaria/prevention & control , Insecticides/pharmacology
7.
Sci Rep ; 11(1): 18055, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34508114

ABSTRACT

The scale up of indoor residual spraying (IRS) and insecticide treated nets have contributed significantly to global reductions in malaria prevalence over the last two decades. However, widespread pyrethroid resistance has necessitated the use of new and more expensive insecticides for IRS. Partial IRS with pirimiphos-methyl in experimental huts and houses in a village-wide trial was evaluated against Anopheles gambiae s.l. in northern Ghana. Four different scenarios in which either only the top or bottom half of the walls of experimental huts were sprayed, with or without also spraying the ceiling were compared. Mortality of An. gambiae s.l. on partially sprayed walls was compared with the standard procedures in which all walls and ceiling surfaces are sprayed. A small-scale trial was then conducted to assess the effectiveness, feasibility, and cost of spraying only the upper walls and ceiling as compared to full IRS and no spraying in northern Ghana. Human landing catches were conducted to estimate entomological indices and determine the effectiveness of partial IRS. An established transmission dynamics model was parameterized by an analysis of the experimental hut data and used to predict the epidemiological impact and cost effectiveness of partial IRS for malaria control in northern Ghana. In the experimental huts, partial IRS of the top (IRR 0.89, p = 0.13) or bottom (IRR 0.90, p = 0.15) half of walls and the ceiling was not significantly less effective than full IRS in terms of mosquito mortality. In the village trial, the annual entomological inoculation rate was higher for the unsprayed control (217 infective bites/person/year (ib/p/yr)) compared with the fully and partially sprayed sites, with 28 and 38 ib/p/yr, respectively. The transmission model predicts that the efficacy of partial IRS against all-age prevalence of malaria after six months would be broadly equivalent to a full IRS campaign in which 40% reduction is expected relative to no spray campaign. At scale, partial IRS in northern Ghana would have resulted in a 33% cost savings ($496,426) that would enable spraying of 36,000 additional rooms. These findings suggest that partial IRS is an effective, feasible, and cost saving approach to IRS that could be adopted to sustain and expand implementation of this key malaria control intervention.


Subject(s)
Anopheles/drug effects , Insecticides/administration & dosage , Mosquito Control/methods , Organothiophosphorus Compounds/administration & dosage , Aerosolized Particles and Droplets , Animals , Cost-Benefit Analysis , Geography , Ghana/epidemiology , Malaria/epidemiology , Malaria/prevention & control , Malaria/transmission , Models, Theoretical , Public Health Surveillance
8.
Malar J ; 20(1): 316, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34261475

ABSTRACT

BACKGROUND: Following agricultural use and large-scale distribution of insecticide-treated nets (ITNs), malaria vector resistance to pyrethroids is widespread in sub-Saharan Africa. Interceptor® G2 is a new dual active ingredient (AI) ITN treated with alpha-cypermethrin and chlorfenapyr for the control of pyrethroid-resistant malaria vectors. In anticipation of these new nets being more widely distributed, testing was conducted to develop a chlorfenapyr susceptibility bioassay protocol and gather susceptibility information. METHODS: Bottle bioassay tests were conducted using five concentrations of chlorfenapyr at 12.5, 25, 50, 100, and 200 µg AI/bottle in 10 countries in sub-Saharan Africa using 13,639 wild-collected Anopheles gambiae sensu lato (s.l.) (56 vector populations per dose) and 4,494 pyrethroid-susceptible insectary mosquitoes from 8 colonized strains. In parallel, susceptibility tests were conducted using a provisional discriminating concentration of 100 µg AI/bottle in 16 countries using 23,422 wild-collected, pyrethroid-resistant An. gambiae s.l. (259 vector populations). Exposure time was 60 min, with mortality recorded at 24, 48 and 72 h after exposure. RESULTS: Median mortality rates (up to 72 h after exposure) of insectary colony mosquitoes was 100% at all five concentrations tested, but the lowest dose to kill all mosquitoes tested was 50 µg AI/bottle. The median 72-h mortality of wild An. gambiae s.l. in 10 countries was 71.5, 90.5, 96.5, 100, and 100% at concentrations of 12.5, 25, 50, 100, and 200 µg AI/bottle, respectively. Log-probit analysis of the five concentrations tested determined that the LC95 of wild An. gambiae s.l. was 67.9 µg AI/bottle (95% CI: 48.8-119.5). The discriminating concentration of 203.8 µg AI/bottle (95% CI: 146-359) was calculated by multiplying the LC95 by three. However, the difference in mortality between 100 and 200 µg AI/bottle was minimal and large-scale testing using 100 µg AI/bottle with wild An. gambiae s.l. in 16 countries showed that this concentration was generally suitable, with a median mortality rate of 100% at 72 h. CONCLUSIONS: This study determined that 100 or 200 µg AI/bottle chlorfenapyr in bottle bioassays are suitable discriminating concentrations for monitoring susceptibility of wild An. gambiae s.l., using mortality recorded up to 72 h. Testing in 16 countries in sub-Saharan Africa demonstrated vector susceptibility to chlorfenapyr, including mosquitoes with multiple resistance mechanisms to pyrethroids.


Subject(s)
Anopheles/drug effects , Insecticide Resistance , Insecticide-Treated Bednets , Insecticides/pharmacology , Pyrethrins/pharmacology , Animals , Dose-Response Relationship, Drug
9.
Malar J ; 18(1): 264, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31370898

ABSTRACT

BACKGROUND: In 2017, more than 5 million house structures were sprayed through the U.S. President's Malaria Initiative, protecting more than 21 million people in sub-Saharan Africa. New IRS formulations, SumiShield™ 50WG and Fludora Fusion™ WP-SB, became World Health Organization (WHO) prequalified vector control products in 2017 and 2018, respectively. Both formulations contain the neonicotinoid active ingredient, clothianidin. The target site of neonicotinoids represents a novel mode of action for vector control, meaning that cross-resistance through existing mechanisms is less likely. In preparation for rollout of clothianidin formulations as part of national IRS rotation strategies, baseline susceptibility testing was conducted in 16 countries in sub-Saharan Africa. METHODS: While work coordinated by the WHO is ongoing to develop a suitable bottle bioassay procedure, there was no published guidance regarding clothianidin susceptibility procedures or diagnostic concentrations. Therefore, a protocol was developed for impregnating filter papers with 2% w/v SumiShield™ 50WG dissolved in distilled water. Susceptibility tests were conducted using insectary-reared reference Anopheles and wild collected malaria vector species. All tests were conducted within 24 h of treating papers, with mortality recorded daily for 7 days, due to the slow-acting nature of clothianidin against mosquitoes. Anopheles gambiae sensu lato (s.l.) adults from wild collected larvae were tested in 14 countries, with wild collected F0 Anopheles funestus s.l. tested in Mozambique and Zambia. RESULTS: One-hundred percent mortality was reached with all susceptible insectary strains and with wild An. gambiae s.l. from all sites in 11 countries. However, tests in at least one location from 5 countries produced mortality below 98%. While this could potentially be a sign of clothianidin resistance, it is more likely that the diagnostic dose or protocol requires further optimization. Repeat testing in 3 sites in Ghana and Zambia, where possible resistance was detected, subsequently produced 100% mortality. Results showed susceptibility to clothianidin in 38 of the 43 sites in sub-Saharan Africa, including malaria vectors with multiple resistance mechanisms to pyrethroids, carbamates and organophosphates. CONCLUSIONS: This study provides an interim diagnostic dose of 2% w/v clothianidin on filter papers which can be utilized by National Malaria Control Programmes and research organizations until the WHO concludes multi-centre studies and provides further guidance.


Subject(s)
Anopheles/drug effects , Guanidines/pharmacology , Insecticide Resistance , Insecticides/pharmacology , Malaria/prevention & control , Mosquito Control , Mosquito Vectors/drug effects , Neonicotinoids/pharmacology , Thiazoles/pharmacology , Africa South of the Sahara , Animals , Communicable Disease Control , Malaria/transmission , Reference Values
10.
Malar J ; 16(1): 342, 2017 08 17.
Article in English | MEDLINE | ID: mdl-28818077

ABSTRACT

BACKGROUND: Malaria vector control methods involving the use of pyrethroids remain the strategies being used against malaria vectors in Ghana. These methods include the use of long-lasting insecticidal nets and indoor residual spraying in many areas in Ghana. However, there is evidence that pyrethroid resistance is widespread in many areas in Ghana. Synergists have been shown to be useful in inhibiting the enzymes that are responsible for the development of resistance and hence enhance the insecticide susceptibility of Anopheles gambiae sensu lato (s.l.) in many areas. The present study investigated the effect of piperonyl butoxide (PBO) on the susceptibility status of An. gambiae s.l. across some sentinel sites in Ghana. METHODS: Three to five day old An. gambiae s.l. reared from larvae were used in WHO susceptibility tube assays. Batches of 20-25 female adult An. gambiae s.l. were exposed simultaneously to the insecticide alone and to the PBO + insecticide. The knock down rate after 60 min and mortality at 24 h were recorded. RESULTS: Deltamethrin and permethrin resistance of An. gambiae s.l. was observed in all the sites in 2015 and 2016. The mortality after 24 h post exposure for deltamethrin ranged from 16.3% in Weija to 82.3% in Kade, whereas that for permethrin ranged from 3.8% in Gomoa Obuasi to 91.3% in Prestea. A significant increase in susceptibility to deltamethrin and less to permethrin was observed during both 2015 and 2016 years in most of the sites when An. gambiae s.l. mosquitoes were pre-exposed to PBO. CONCLUSION: Findings from this study showed that the use of PBO significantly enhanced the susceptibility of An. gambiae s.l. mosquitoes in most of the sentinel sites. It is recommended that vector control strategies incorporating PBO as a synergist can be effective in killing mosquitoes in the presence of deltamethrin and permethrin resistance.


Subject(s)
Anopheles , Insecticide Resistance , Insecticides , Nitriles , Permethrin , Piperonyl Butoxide , Pyrethrins , Animals , Female , Ghana
11.
Malar J ; 16(1): 324, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28797269

ABSTRACT

BACKGROUND: Indoor residual spraying (IRS) is being implemented as one of the malaria prevention methods in the Northern Region of Ghana. Changes in longevity, sporozoite and entomological inoculation rates (EIRs) of major malaria vectors were monitored to assess the impact of IRS in selected districts. METHODS: Monthly human landing catches (HLCs) were used to collect mosquitoes from sentinel sites in three adjacent districts between July 2009 and December 2014: Savelugu Nanton (SND) where IRS had been implemented from 2008 to 2014; Tolon Kumbungu (TKD) where IRS had been implemented between 2008 and 2012 and Tamale Metropolis (TML) with no history of IRS. Mosquitoes were morphologically identified to species level and into sibling species, using PCR. Samples of Anopheles gambiae sensu lato (s.l.) were examined for parity and infectivity. EIR was calculated from biting and infectivity rates of malaria vectors. RESULTS: Parity rates of An. gambiae s.l. decreased significantly (p < 0.0001) in SND from 44.8% in 2011 to 28.1% by 2014, and in TKD from 53.3% in 2011 to 46.6% in 2012 (p = 0.001). However 2 years after IRS was discontinued in TKD, the proportion of parous An. gambiae s.l. increased significantly to 68.5% in 2014 (p < 0.0001). Parity rates in the unsprayed district remained high throughout the study period, ranging between 68.6% in 2011 and 72.3% in 2014. The sum of monthly EIRs post-IRS season (July-December) in SND ranged between 2.1 and 6.3 infective bites/person/season (ib/p/s) during the 3 years that the district was sprayed with alphacypermethrin. EIR in SND was reduced to undetectable levels when the insecticide was switched to pirimiphos methyl CS in 2013 and 2014. Two years after IRS was withdrawn from TKD the sum of monthly EIRs (July-December) increased by about fourfold from 41.8 ib/p/s in 2012 to 154.4 ib/p/s in 2014. The EIR in the control area, TML, ranged between 35 ib/p/s in 2009 to 104.71 ib/p/s by 2014. CONCLUSIONS: This study demonstrates that IRS application did have a significant impact on entomological indicators of malaria transmission in the IRS project districts of Northern Ghana. Transmission indicators increased following the withdrawal of IRS from Tolon Kumbungu District.


Subject(s)
Anopheles , Housing , Insect Vectors , Insecticides , Malaria/transmission , Mosquito Control/standards , Animals , Ghana , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...