Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Rev Clin Lab Sci ; 60(8): 595-624, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37439130

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to an unprecedented global healthcare crisis. While SARS-CoV-2-associated COVID-19 affects primarily the respiratory system, patients with COVID-19 frequently develop extrapulmonary manifestations. Notably, changes in the hematological system, including lymphocytopenia, neutrophilia and significant abnormalities of hemostatic markers, were observed early in the pandemic. Hematological manifestations have since been recognized as important parameters in the pathophysiology of SARS-CoV-2 and in the management of patients with COVID-19. In this narrative review, we summarize the state-of-the-art regarding the hematological and hemostatic abnormalities observed in patients with SARS-CoV-2-associated COVID-19, as well as the current understanding of the hematological system in the pathophysiology of acute and chronic SARS-CoV-2-associated COVID-19.


Subject(s)
COVID-19 , Hemostatics , Humans , SARS-CoV-2 , Pandemics
2.
Viruses ; 14(10)2022 09 21.
Article in English | MEDLINE | ID: mdl-36298651

ABSTRACT

SARS-CoV-2 cell-cell fusion and syncytiation is an emerging pathomechanism in COVID-19, but the precise factors contributing to the process remain ill-defined. In this study, we show that metalloproteases promote SARS-CoV-2 spike protein-induced syncytiation in the absence of established serine proteases using in vitro cell-cell fusion assays. We also show that metalloproteases promote S2'-activation of the SARS-CoV-2 spike protein, and that metalloprotease inhibition significantly reduces the syncytiation of SARS-CoV-2 variants of concern. In the presence of serine proteases, however, metalloprotease inhibition does not reduce spike protein-induced syncytiation and a combination of metalloprotease and serine protease inhibition is necessitated. Moreover, we show that the spike protein induces metalloprotease-dependent ectodomain shedding of the ACE2 receptor and that ACE2 shedding contributes to spike protein-induced syncytiation. These observations suggest a benefit to the incorporation of pharmacological inhibitors of metalloproteases into treatment strategies for patients with COVID-19.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Cell Fusion , Serine Endopeptidases/metabolism , Metalloproteases , Serine Proteases
3.
Biochem Soc Trans ; 45(6): 1185-1202, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29079648

ABSTRACT

Receptor signalling events including those initiated following activation of cytokine and growth factor receptors and the well-characterised death receptors (tumour necrosis factor receptor, type 1, FasR and TRAIL-R1/2) are initiated at the cell surface through the recruitment and formation of intracellular multiprotein signalling complexes that activate divergent signalling pathways. Over the past decade, research studies reveal that many of these receptor-initiated signalling events involve the sequential proteolysis of specific receptors by membrane-bound proteases and the γ-secretase protease complexes. Proteolysis enables the liberation of soluble receptor ectodomains and the generation of intracellular receptor cytoplasmic domain fragments. The combined and sequential enzymatic activity has been defined as regulated intramembrane proteolysis and is now a fundamental signal transduction process involved in the termination or propagation of receptor signalling events. In this review, we discuss emerging evidence for a role of the γ-secretase protease complexes and regulated intramembrane proteolysis in cell- and immune-signalling pathways.


Subject(s)
Signal Transduction , Amyloid Precursor Protein Secretases/metabolism , Animals , Cell Membrane/metabolism , Cytokines/metabolism , Humans , Immune System/metabolism , Protein Binding , Proteolysis , Receptors, Cell Surface/metabolism
4.
J Biol Chem ; 291(11): 5971-5985, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-26755728

ABSTRACT

The γ-secretase protease and associated regulated intramembrane proteolysis play an important role in controlling receptor-mediated intracellular signaling events, which have a central role in Alzheimer disease, cancer progression, and immune surveillance. An increasing number of γ-secretase substrates have a role in cytokine signaling, including the IL-6 receptor, IL-1 receptor type I, and IL-1 receptor type II. In this study, we show that following TNF-converting enzyme-mediated ectodomain shedding of TNF type I receptor (TNFR1), the membrane-bound TNFR1 C-terminal fragment is subsequently cleaved by γ-secretase to generate a cytosolic TNFR1 intracellular domain. We also show that clathrin-mediated internalization of TNFR1 C-terminal fragment is a prerequisite for efficient γ-secretase cleavage of TNFR1. Furthermore, using in vitro and in vivo model systems, we show that in the absence of presenilin expression and γ-secretase activity, TNF-mediated JNK activation was prevented, assembly of the TNFR1 pro-apoptotic complex II was reduced, and TNF-induced apoptosis was inhibited. These observations demonstrate that TNFR1 is a γ-secretase substrate and suggest that γ-secretase cleavage of TNFR1 represents a new layer of regulation that links the presenilins and the γ-secretase protease to pro-inflammatory cytokine signaling.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Apoptosis , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Cell Line , Chemokine CXCL1/metabolism , Enzyme Activation , Gene Deletion , Humans , MAP Kinase Kinase 4/metabolism , Mice, Inbred C57BL , Mice, Knockout , Presenilins/genetics , Presenilins/metabolism , Proteolysis , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...