Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 112(10): 2012-7, 2008 Mar 13.
Article in English | MEDLINE | ID: mdl-18251523

ABSTRACT

Our objective is to assess the accuracy of simulated quantum Monte Carlo electron distributions of atoms and molecules. Our approach is first to model the exact electron distribution by a linear combination of gamma distribution functions, with parameters chosen to exactly reproduce highly accurate literature values for a number of selected moments for the system of interest. In application to the ground-state electron distributions of helium and dihydrogen, a high level of accuracy of the model was confirmed upon comparing its predicted moments, not used in the model's parametrization, to those calculated from high-level theory. Next, we generated electron-electron and electron-nucleus distributions for dihydrogen from electron positions outputted from a variety of quantum Monte Carlo algorithms. Upon juxtaposition of the simulated distributions with the putatively exact one that we derived from the model, we quantified the error in simulated distributions. The most accurate distributions were obtained from no-compromise reptation quantum Monte Carlo, a recently developed algorithm designed to ameliorate the distributions' time-step bias. Marginally less accurate distributions were generated from fixed-node diffusion Monte Carlo with descendant counting and detailed balance.

SELECTION OF CITATIONS
SEARCH DETAIL
...