Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 60(7): 881-884, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38165276

ABSTRACT

The aluminacyclopropane K[Al(NON)(η-C2H4)] ([NON]2- = [O(SiMe2NDipp)2]2-, Dipp = 2,6-iPr2C6H3) reacts with CO2 and iPrNCNiPr to afford ring-expanded products of C-C bond formation. The latter system undergoes a 1,3-silyl retro-Brook rearrangement of the NON-group, to afford the [NNO]2- ligand ([NNO]2- = [N(Dipp)SiMe2N(Dipp)SiMe2O]2-). The mechanism of transformation was examined by density functional theory (DFT).

2.
Chemistry ; 30(1): e202302999, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37786922

ABSTRACT

A simple sequential addition protocol for the reductive coupling of ketones and aldehydes by a potassium aluminyl grants access to unsymmetrical pinacolate derivatives. Isolation of an aluminium ketyl complex presents evidence for the accessibility of radical species. Product release from the aluminium centre was achieved using an iodosilane, forming the disilylated 1,2-diol and a neutral aluminium iodide, thereby demonstrating the steps required to generate a closed synthetic cycle for pinacol (cross) coupling at an aluminyl anion.

3.
Chemistry ; 29(71): e202302903, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-37786384

ABSTRACT

The reaction of 9-diazo-9H-fluorene (fluN2 ) with the potassium aluminyl K[Al(NON)] ([NON]2- =[O(SiMe2 NDipp)2 ]2- , Dipp=2,6-iPr2 C6 H3 ) affords K[Al(NON)(κN1 ,N3 -{(fluN2 )2 })] (1). Structural analysis shows a near planar 1,4-di(9H-fluoren-9-ylidene)tetraazadiide ligand that chelates to the aluminium. The thermally induced elimination of dinitrogen from 1 affords the neutral aluminium ketimide complex, Al(NON)(N=flu)(THF) (2) and the 1,2-di(9H-fluoren-9-yl)diazene dianion as the potassium salt, [K2 (THF)3 ][fluN=Nflu] (3). The reaction of 2 with N,N'-diisopropylcarbodiimide (iPrN=C=NiPr) affords the aluminium guanidinate complex, Al(NON){N(iPr)C(N=CMe2 )N(CHflu)} (4), showing a rare example of reactivity at a metal ketimide ligand. Density functional theory (DFT) calculations have been used to examine the bonding in the newly formed [(fluN2 )2 ]2- ligand in 1 and the ketimide bonding in 2. The mechanism leading to the formation of 4 has also been studied using this technique.

4.
Chemistry ; 29(56): e202301849, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37429823

ABSTRACT

Three distinct routes are reported to the soluble, dihydridoaluminate compounds, AM[Al(NONDipp )(H)2 ] (AM=Li, Na, K, Rb, Cs; [NONDipp ]2- =[O(SiMe2 NDipp)2 ]2- ; Dipp=2,6-iPr2 C6 H3 ) starting from the alkali metal aluminyls, AM[Al(NONDipp )]. Direct H2 hydrogenation of the heavier analogues (AM=Rb, Cs) produced the first examples of structurally characterized rubidium and caesium dihydridoaluminates, although harsh conditions were required for complete conversion. Using 1,4-cyclohexadiene (1,4-CHD) as an alternative hydrogen source in transfer hydrogenation reactions provided a lower energy pathway to the full series of products for AM=Li-Cs. A further moderation in conditions was noted for the thermal decomposition of the (silyl)(hydrido)aluminates, AM[Al(NONDipp )(H)(SiH2 Ph)]. Probing the reaction of Cs[Al(NONDipp )] with 1,4-CHD provided access to a novel inverse sandwich complex, [{Cs(Et2 O)}2 {Al(NONDipp )(H)}2 (C6 H6 )], containing the 1,4-dialuminated [C6 H6 ]2- dianion and representing the first time that an intermediate in the commonly utilized oxidation process of 1,4-CHD to benzene has been trapped. The synthetic utility of the newly installed Al-H bonds has been demonstrated by their ability to reduce CO2 under mild conditions to form the bis-formate AM[Al(NONDipp )(O2 CH)2 ] compounds, which exhibit a diverse series of eyecatching bimetallacyclic structures.

5.
Chem Sci ; 14(23): 6278-6288, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37325153

ABSTRACT

We report the reaction of the potassium aluminyl, K[Al(NON)] ([NON]2- = [O(SiMe2NDipp)2]2-, Dipp = 2,6-iPr2C6H3) with a series of isocyanide substrates (R-NC). In the case of tBu-NC, degradation of the isocyanide was observed generating an isomeric mixture of the corresponding aluminium cyanido-κC and -κN compounds, K[Al(NON)(H)(CN)]/K[Al(NON)(H)(NC)]. The reaction with 2,6-dimethylphenyl isocyanide (Dmp-NC), gave a C3-homologation product, which in addition to C-C bond formation showed dearomatisation of one of the aromatic substituents. In contrast, using adamantyl isocyanide Ad-NC allowed both the C2- and C3-homologation products to be isolated, allowing a degree of control to be exercised over the chain growth process. These data also show that the reaction proceeds through a stepwise addition, supported in this study by the synthesis of the mixed [(Ad-NC)2(Dmp-NC)]2- product. Computational analysis of the bonding within the homologised products confirm a high degree of multiple bond character in the exocyclic ketenimine units of the C2- and C3-products. In addition, the mechanism of chain growth was investigated, identifying different possible pathways leading to the observed products, and highlighting the importance of the potassium cation in formation of the initial C2-chain.

6.
Chem Commun (Camb) ; 59(15): 2134-2137, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36727241

ABSTRACT

Reduction of the heteroleptic Ln(III) precursors [Ln(Tp)2(OTf)] (Tp = hydrotris(1-pyrazolyl)borate; OTf = triflate) with either an aluminyl(I) anion or KC8 yielded the adduct-free homoleptic Ln(II) complexes dimeric 1-Eu [{Eu(Tp)(µ-κ1:η5-Tp)}2] and monomeric 1-Yb [Yb(Tp)2]. Complexes 1-Ln have good solubility and stability in both non-coordinating and coordinating solvents. Reaction of 1-Ln with 2 Ph3PO yielded 1-Ln(OPPh3)2. All complexes are intensely coloured and 1-Eu is photoluminescent. The electronic absorption data show the 4f-5d electronic transitions in Ln(II). Single-crystal X-ray diffraction data reveal first µ-κ1:η5-coordination mode of the unsubstituted Tp ligand to lanthanides in 1-Eu.

7.
Chem Commun (Camb) ; 59(5): 503-519, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36541674

ABSTRACT

The chemistry of low valent p-block metal complexes continues to elicit interest in the research community, demonstrating reactivity that replicates and in some cases exceeds that of their more widely studied d-block metal counterparts. The introduction of the first aluminyl anion, a complex containing a formally anionic Al(I) centre charge balanced by an alkali metal (AM) cation, has established a platform for a new area of chemical research. The chemistry displayed by aluminyl compounds is expanding rapidly, with examples of reactivity towards a diverse range of small molecules and functional groups now reported in the literature. Herein we present an account of the structure and reactivity of the growing family of aluminyl compounds. In this context we examine the structural relationships between the aluminyl anion and the AM cations, which now include examples of AM = Li, Na, K, Rb and Cs. We report on the ability of these compounds to engage in bond-breaking and bond-forming reactions, which is leading towards their application as useful reagents in chemical synthesis. Furthermore we discuss the chemistry of bimetallic complexes containing direct Al-M bonds (M = Li, Na, K, Mg, Ca, Cu, Ag, Au, Zn) and compounds with Al-E multiple bonds (E = NR, CR2, O, S, Se, Te), where both classes of compound are derived directly from aluminyl anions.

8.
Inorg Chem ; 61(49): 19838-19846, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36503245

ABSTRACT

We report the oxidative addition of phenylsilane to the complete series of alkali metal (AM) aluminyls [AM{Al(NONDipp)}]2 (AM = Li, Na, K, Rb, and Cs). Crystalline products (1-AM) have been isolated as ether or THF adducts, [AM(L)n][Al(NONDipp)(H)(SiH2Ph)] (AM = Li, Na, K, Rb, L = Et2O, n = 1; AM = Cs, L = THF, n = 2). Further to this series, the novel rubidium rubidiate, [{Rb(THF)4}2(Rb{Al(NONDipp)(H)(SiH2Ph)}2)]+ [Rb{Al(NONDipp)(H)(SiH2Ph)}2]-, was isolated during an attempted recrystallization of Rb[Al(NONDipp)(H)(SiH2Ph)] from a hexane/THF mixture. Structural and spectroscopic characterizations of the series 1-AM confirm the presence of µ-hydrides that bridge the aluminum and alkali metals (AM), with multiple stabilizing AM···π(arene) interactions to either the Dipp- or Ph-substituents. These products form a complete series of soluble, alkali metal (hydrido) aluminates that present a platform for further reactivity studies.


Subject(s)
Metals, Alkali , Metals, Alkali/chemistry , Sodium/chemistry , Lithium , Rubidium/chemistry , Ions
9.
Chem Commun (Camb) ; 58(72): 10091-10094, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-35997148

ABSTRACT

The reaction of compounds containing Al-Mg and Al-Zn bonds with N2O enabled isolation of the corresponding Al(µ-O)M complexes. Electronic structure analysis identified largely ionic Al-O and O-M bonds, featuring an anionic µ-oxo centre. Reaction with CO2 confirmed that these species correspond to the proposed intermediates in the formation of µ-carbonate compounds.

10.
Chem Sci ; 13(16): 4635-4646, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35656129

ABSTRACT

Multiply-bonded main group metal compounds are of interest as a new class of reactive species able to activate and functionalize a wide range of substrates. The aluminium sulfido compound K[Al(NONDipp)(S)] (NONDipp = [O(SiMe2NDipp)2]2-, Dipp = 2,6-iPr2C6H3), completing the series of [Al(NONDipp)(E)]- anions containing Al-E{16} multiple bonds (E{16} = O, S, Se, Te), was accessed via desulfurisation of K[Al(NONDipp)(S4)] using triphenylphosphane. The crystal structure showed a tetrameric aggregate joined by multiple K⋯S and K⋯π(arene) interactions that were disrupted by the addition of 2.2.2-cryptand to form the separated ion pair, [K(2.2.2-crypt)][Al(NONDipp)(S)]. Analysis of the anion using density functional theory (DFT) confirmed multiple-bond character in the Al-S group. The reaction of the sulfido and selenido anions K[Al(NONDipp)(E)] (E = S, Se) with CO2 afforded K[Al(NONDipp)(κ2 E,O-EC{O}O)] containing the thio- and seleno-carbonate groups respectively, consistent with a [2 + 2]-cycloaddition reaction and C-E bond formation. An analogous cycloaddition reaction took place with benzophenone affording compounds containing the diphenylsulfido- and diphenylselenido-methanolate ligands, [κ2 E,O-EC{O}Ph2]2-. In contrast, when K[Al(NONDipp)(E)] (E = S, Se) was reacted with benzaldehyde, two equivalents of substrate were incorporated into the product accompanied by formation of a second C-E bond and complete cleavage of the Al-E{16} bonds. The products contained the hitherto unknown κ2 O,O-thio- and κ2 O,O-seleno-bis(phenylmethanolate) ligands, which were exclusively isolated as the cis-stereoisomers. The mechanisms of these cycloaddition reactions were investigated using DFT methods.

11.
Chem Commun (Camb) ; 58(39): 5833-5836, 2022 May 12.
Article in English | MEDLINE | ID: mdl-35452064

ABSTRACT

(NONDipp)Al-K(TMEDA)2 (NONDipp = [O(SiMe2NDipp)2]2-, Dipp = 2,6-iPr2C6H3), containing an Al-K bond, activates and reductively couples cabon monoxide gas to form the [C4O4]4- ligand. This oxocarbon anion is thermally isomerised in the presence of CO and TMEDA. In contrast, the dimeric potassium aluminyl [K{Al(NONDipp)}]2 yields an aluminium complex containing the hitherto unknown [C5O5]5- ligand.

12.
Angew Chem Int Ed Engl ; 61(16): e202117396, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35166007

ABSTRACT

The potassium aluminyl [K{Al(NONDipp )}]2 ([NONDipp ]2- =[O{SiMe2 NDipp}2 ]2- , Dipp=2,6-iPr2 C6 H3 ) activates ethene towards carbonylation with CO under mild conditions. An isolated bis-aluminacyclopropane compound reacted with CO via carbonylation of an Al-C bond, followed by an intramolecular hydrogen shift to form K2 [Al(NONDipp )(µ-CH2 CH=CO-1κ2 C1,3 -2κO)Al(NONDipp )Et]. Restricting the chemistry to a mono-aluminium system allowed isolation of [Al(NONDipp )(CH2 CH2 CO-κ2 C1,3 )]- , which undergoes thermal isomerisation to form the [Al(NONDipp )(CH2 CH=CHO-κ2 C,O)]- anion. DFT calculations highlight the stabilising influence of incorporated benzene at multiple steps in the reaction pathways.

13.
Chem Commun (Camb) ; 58(9): 1390-1393, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-34994367

ABSTRACT

Expanding knowledge of low valent aluminium chemistry, rubidium and caesium aluminyls are reported to complete the group 1 (Li-Cs) set of metal aluminyls. Both compounds crystallize as a contacted dimeric pair supported by M⋯π(arene) interactions with a pronounced twist between aluminyl units. Density functional theory calculations show symmetrical bonding between the M and Al atoms, with an Al centred lone-pair donating into vacant Rb and Cs orbitals. Interestingly, despite their structural similarity the Cs aluminyl enables C-H bond activation of benzene, but not the Rb aluminyl reflecting the importance of the alkali metal in these heterobimetallic systems.

14.
Inorg Chem ; 60(23): 18423-18431, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34807607

ABSTRACT

The aluminyl compounds [M{Al(NONDipp)}]2 (NONDipp = [O(SiMe2NDipp)2]2-, Dipp = 2,6-iPr2C6H3), which exist as contacted dimeric pairs in both the solution and solid states, have been converted to monomeric ion pairs and separated ion pairs for each of the group 1 metals, M = Li, Na, and K. The monomeric ion pairs contain discrete, highly polarized Al-M bonds between the aluminum and the group 1 metal and have been isolated with monodentate (THF, M = Li and Na) or bidentate (TMEDA, M = Li, Na, and K) ligands at M. The separated ion pairs comprise group 1 cations that are encapsulated by polydentate ligands, rendering the aluminyl anion, [Al(NONDipp)]- "naked". For M = Li, this structure type was isolated as the [Li(TMEDA)2]+ salt directly from a solution of the corresponding contacted dimeric pair in neat TMEDA, while the polydentate [2.2.2]cryptand ligand was used to generate the separated ion pairs for the heavier group 1 metals M = Na and K. This work shows that starting from the corresponding contacted dimeric pairs, the extent of the Al-M interaction in these aluminyl systems can be readily controlled with appropriate chelating reagents.

15.
Angew Chem Int Ed Engl ; 60(41): 22289-22292, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34402149

ABSTRACT

To date, aluminyl anions have been exclusively isolated as their potassium salts. We report herein the synthesis of the lithium and sodium aluminyls, M2 [Al(NONDipp )]2 (M=Li, Na. NONDipp =[O(SiMe2 NDipp)2 ]2- ; Dipp=2,6-iPr2 C6 H3 ). Both compounds crystallize from non-coordinating solvent as "slipped" contacted dimeric pairs with strong M⋅⋅⋅π(aryl) interactions. Isolation from Et2 O solution affords the monomeric ion pairs (NONDipp )Al-M(Et2 O)2 , which contain discrete Al-Li and Al-Na bonds. The ability of the full series of Li, Na and K aluminyls to activate dihydrogen is reported.

16.
Inorg Chem ; 60(7): 4772-4778, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33724013

ABSTRACT

The aluminyl anion K[Al(NONDipp)] {NONDipp = [O(SiMe2NDipp)2]2-; Dipp = 2,6-iPr2C6H3} engages in oxidative additions with the E-H (E = Si, P, N, or O) bonds of phenylsilane (PhSiH3), mesityl phosphane (MesPH2; Mes = 2,4,6-Me3C6H2), 2,6-di-iso-propylaniline (DippNH2), and 2,6-di-tert-butyl-4-methylphenol (ArOH). The resulting (hydrido)aluminate salts are formed regardless of the E-H bond polarity. All of the products were characterized by nuclear magnetic resonance and infrared spectroscopic techniques and single-crystal X-ray diffraction. This study highlights the versatility of aluminyl anions to activate hydridic, acidic, and (essentially) nonpolar E-H bonds.

17.
Chem Commun (Camb) ; 57(21): 2673-2676, 2021 Mar 14.
Article in English | MEDLINE | ID: mdl-33594393

ABSTRACT

We report the [Al(NONDipp)(Te)(THF)]- anion containing a terminal aluminium telluride bond. DFT calculations confirm appreciable Al-Te multiple bond character and reaction with CO2 proceeds via a double insertion to afford the previously unknown tellurodicarbonate ligand.

18.
Angew Chem Int Ed Engl ; 59(31): 12806-12810, 2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32378311

ABSTRACT

[K{Al(NONDipp )}]2 (NONDipp =[O(SiMe2 NDipp)2 ]2- , Dipp=2,6-iPr2 C6 H3 ) reacts with CS2 to afford the trithiocarbonate species [K(OEt2 )][Al(NONDipp )(CS3 )] 1 or the ethenetetrathiolate complex, [K{Al(NONDipp )(S2 C)}]2 [3]2 . The dimeric alumoxane [K{Al(NONDipp )(O)}]2 reacts with carbon monoxide to afford the oxygen analogue of 3, [K{Al(NONDipp )(O2 C)}]2 [4]2 containing the hitherto unknown ethenetetraolate ligand, [C2 O4 ]4- .

19.
Angew Chem Weinheim Bergstr Ger ; 132(10): 3956-3960, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32313322

ABSTRACT

A seven-membered N,N'-heterocyclic potassium alumanyl nucleophile is introduced and utilised in the metathetical synthesis of Mg-Al and Ca-Al bonded derivatives. Both species have been characterised by experimental and theoretical means, allowing a rationalisation of the greater reactivity of the heavier group 2 species implied by an initial assay of their reactivity.

20.
Chem Commun (Camb) ; 56(15): 2288-2291, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-31984981

ABSTRACT

The reaction of the potassium aluminyl K[Al(NONDipp)] (NONDipp = [O(SiMe2NDipp)2]2-, Dipp = 2,6-iPr2C6H3) with an organic azide generates the aluminium imide complex, K[Al(NONDipp)(NMes)] (Mes = mesityl = 2,4,6-Me3C6H2). DFT calculations indicate the Al-Nimide interaction is polarized but has appreciable multiple-bond character. This is demonstrated experimentally by the reaction with carbon dioxide, giving a rare example of a main group carbamate dianion via a [2+2] cycloaddition reaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...