Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Infect Dis ; 8(1): 170-182, 2022 01 14.
Article in English | MEDLINE | ID: mdl-34860493

ABSTRACT

Exposure of the Gram-negative pathogen Pseudomonas aeruginosa to subinhibitory concentrations of antibiotics increases the formation of biofilms. We exploited this phenotype to identify molecules with potential antimicrobial activity in a biofilm-based high-throughput screen. The anti-inflammatory compound BAY 11-7082 induced dose-dependent biofilm stimulation, indicative of antibacterial activity. We confirmed that BAY 11-7082 inhibits the growth of P. aeruginosa and other priority pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). We synthesized 27 structural analogues, including a series based on the related scaffold 3-(phenylsulfonyl)-2-pyrazinecarbonitrile (PSPC), 10 of which displayed increased anti-Staphylococcal activity. Because the parent molecule inhibits the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome, we measured the ability of select analogues to reduce interleukin-1ß (IL-1ß) production in mammalian macrophages, identifying minor differences in the structure-activity relationship for the anti-inflammatory and antibacterial properties of this scaffold. Although we could evolve stably resistant MRSA mutants with cross-resistance to BAY 11-7082 and PSPC, their lack of shared mutations suggested that the two molecules could have multiple targets. Finally, we showed that BAY 11-7082 and its analogues synergize with penicillin G against MRSA, suggesting that this scaffold may serve as an interesting starting point for the development of antibiotic adjuvants.


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests , Nitriles , Sulfones/pharmacology
2.
Ann N Y Acad Sci ; 1496(1): 59-81, 2021 07.
Article in English | MEDLINE | ID: mdl-33830543

ABSTRACT

As the number of effective antibiotics dwindled, antibiotic resistance (AR) became a pressing concern. Some Pseudomonas aeruginosa isolates are resistant to all available antibiotics. In this review, we identify the mechanisms that P. aeruginosa uses to evade antibiotics, including intrinsic, acquired, and adaptive resistance. Our review summarizes many different approaches to overcome resistance. Antimicrobial peptides have potential as therapeutics with low levels of resistance evolution. Rationally designed bacteriophage therapy can circumvent and direct evolution of AR and virulence. Vaccines and monoclonal antibodies are highlighted as immune-based treatments targeting specific P. aeruginosa antigens. This review also identifies promising drug combinations, antivirulence therapies, and considerations for new antipseudomonal discovery. Finally, we provide an update on the clinical pipeline for antipseudomonal therapies and recommend future avenues for research.


Subject(s)
Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa/drug effects , Drug Resistance, Bacterial/genetics , Phage Therapy
SELECTION OF CITATIONS
SEARCH DETAIL