Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 43(3): 113901, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38446663

ABSTRACT

Condensin shapes mitotic chromosomes by folding chromatin into loops, but whether it does so by DNA-loop extrusion remains speculative. Although loop-extruding cohesin is stalled by transcription, the impact of transcription on condensin, which is enriched at highly expressed genes in many species, remains unclear. Using degrons of Rpb1 or the torpedo nuclease Dhp1XRN2 to either deplete or displace RNAPII on chromatin in fission yeast metaphase cells, we show that RNAPII does not load condensin on DNA. Instead, RNAPII retains condensin in cis and hinders its ability to fold mitotic chromatin and to support chromosome segregation, consistent with the stalling of a loop extruder. Transcription termination by Dhp1 limits such a hindrance. Our results shed light on the integrated functioning of condensin, and we argue that a tight control of transcription underlies mitotic chromosome assembly by loop-extruding condensin.


Subject(s)
Adenosine Triphosphatases , Chromosome Segregation , Multiprotein Complexes , Schizosaccharomyces , DNA-Binding Proteins/genetics , Chromatin , Chromosomes , DNA , Schizosaccharomyces/genetics , RNA Polymerase II/genetics , Mitosis , Cell Cycle Proteins/genetics
2.
Elife ; 122023 Nov 21.
Article in English | MEDLINE | ID: mdl-37988290

ABSTRACT

The localization of condensin along chromosomes is crucial for their accurate segregation in anaphase. Condensin is enriched at telomeres but how and for what purpose had remained elusive. Here, we show that fission yeast condensin accumulates at telomere repeats through the balancing acts of Taz1, a core component of the shelterin complex that ensures telomeric functions, and Mit1, a nucleosome remodeler associated with shelterin. We further show that condensin takes part in sister-telomere separation in anaphase, and that this event can be uncoupled from the prior separation of chromosome arms, implying a telomere-specific separation mechanism. Consistent with a cis-acting process, increasing or decreasing condensin occupancy specifically at telomeres modifies accordingly the efficiency of their separation in anaphase. Genetic evidence suggests that condensin promotes sister-telomere separation by counteracting cohesin. Thus, our results reveal a shelterin-based mechanism that enriches condensin at telomeres to drive in cis their separation during mitosis.


Subject(s)
Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Shelterin Complex , Anaphase , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism , Telomere/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism
3.
Annu Rev Phys Chem ; 73: 97-116, 2022 04 20.
Article in English | MEDLINE | ID: mdl-34882434

ABSTRACT

As the volume of data associated with scientific research has exploded over recent years, the use of digital infrastructures to support this research and the data underpinning it has increased significantly. Physical chemists have been making use of eScience infrastructures since their conception, but in the last five years their usage has increased even more. While these infrastructures have not greatly affected the chemistry itself, they have in some cases had a significant impact on how the research is undertaken. The combination of the human effort of collaboration to create open source software tools and semantic resources, the increased availability of hardware for the laboratories, and the range of data management tools available has made the life of a physical chemist significantly easier. This review considers the different aspects of eScience infrastructures and explores how they have improved the way in which we can conduct physical chemistry research.


Subject(s)
Semantics , Software , Chemistry, Physical , Humans
4.
Patterns (N Y) ; 2(1): 100162, 2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33511363

ABSTRACT

The Artificial Intelligence and Augmented Intelligence for Automated Investigation for Scientific Discovery Network+ (AI3SD) was established in response to the UK Engineering and Physical Sciences Research Council (EPSRC) late-2017 call for a Network+ to promote cutting-edge research in artificial intelligence to accelerate groundbreaking scientific discoveries. This article provides the philosophical, scientific, and technical underpinnings of the Network+, the history of the different domains represented in the Network+, and the specific focus of the Network+. The activities, collaborations, and research covered in the first year of the Network+ have highlighted the significant challenges in the chemistry and augmented and artificial intelligence space. These challenges are shaping the future directions of the Network+. The article concludes with a summary of the lessons learned in running this Network+ and introduces our plans for the future in a landscape redrawn by COVID-19, including rebranding into the AI 4 Scientific Discovery Network (www.ai4science.network).

SELECTION OF CITATIONS
SEARCH DETAIL
...