Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Microbiol ; 19(9): 3526-3537, 2017 09.
Article in English | MEDLINE | ID: mdl-28654185

ABSTRACT

Approximately one-third of volatile organic compounds (VOCs) emitted to the atmosphere consists of isoprene, originating from the terrestrial and marine biosphere, with a profound effect on atmospheric chemistry. However, isoprene provides an abundant and largely unexplored source of carbon and energy for microbes. The potential for isoprene degradation in marine and estuarine samples from the Colne Estuary, UK, was investigated using DNA-Stable Isotope Probing (DNA-SIP). Analysis at two timepoints showed the development of communities dominated by Actinobacteria including members of the genera Mycobacterium, Rhodococcus, Microbacterium and Gordonia. Representative isolates, capable of growth on isoprene as sole carbon and energy source, were obtained from marine and estuarine locations, and isoprene-degrading strains of Gordonia and Mycobacterium were characterised physiologically and their genomes were sequenced. Genes predicted to be required for isoprene metabolism, including four-component isoprene monooxygenases (IsoMO), were identified and compared with previously characterised examples. Transcriptional and activity assays of strains growing on isoprene or alternative carbon sources showed that growth on isoprene is an inducible trait requiring a specific IsoMO. This study is the first to identify active isoprene degraders in estuarine and marine environments using DNA-SIP and to characterise marine isoprene-degrading bacteria at the physiological and molecular level.


Subject(s)
Butadienes/metabolism , Gordonia Bacterium/metabolism , Hemiterpenes/metabolism , Mixed Function Oxygenases/metabolism , Mycobacterium/metabolism , Pentanes/metabolism , Rhodococcus/metabolism , Base Sequence , Environment , Genome, Bacterial/genetics , Gordonia Bacterium/classification , Gordonia Bacterium/genetics , Mixed Function Oxygenases/genetics , Mycobacterium/classification , Mycobacterium/genetics , Rhodococcus/classification , Rhodococcus/genetics , Sequence Analysis, DNA , Volatile Organic Compounds/metabolism
2.
ISME J ; 9(1): 195-206, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25050523

ABSTRACT

Movile Cave, Romania, is an unusual underground ecosystem that has been sealed off from the outside world for several million years and is sustained by non-phototrophic carbon fixation. Methane and sulfur-oxidising bacteria are the main primary producers, supporting a complex food web that includes bacteria, fungi and cave-adapted invertebrates. A range of methylotrophic bacteria in Movile Cave grow on one-carbon compounds including methylated amines, which are produced via decomposition of organic-rich microbial mats. The role of methylated amines as a carbon and nitrogen source for bacteria in Movile Cave was investigated using a combination of cultivation studies and DNA stable isotope probing (DNA-SIP) using (13)C-monomethylamine (MMA). Two newly developed primer sets targeting the gene for gamma-glutamylmethylamide synthetase (gmaS), the first enzyme of the recently-discovered indirect MMA-oxidation pathway, were applied in functional gene probing. SIP experiments revealed that the obligate methylotroph Methylotenera mobilis is one of the dominant MMA utilisers in the cave. DNA-SIP experiments also showed that a new facultative methylotroph isolated in this study, Catellibacterium sp. LW-1 is probably one of the most active MMA utilisers in Movile Cave. Methylated amines were also used as a nitrogen source by a wide range of non-methylotrophic bacteria in Movile Cave. PCR-based screening of bacterial isolates suggested that the indirect MMA-oxidation pathway involving GMA and N-methylglutamate is widespread among both methylotrophic and non-methylotrophic MMA utilisers from the cave.


Subject(s)
Carbon-Nitrogen Ligases/metabolism , Glutamates/metabolism , Methylamines/metabolism , Methylophilaceae/metabolism , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Carbon-Nitrogen Ligases/genetics , Caves , Ecosystem , Glutamates/genetics , Methylophilaceae/classification , Methylophilaceae/genetics , Phylogeny , Polymerase Chain Reaction , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics , Romania
3.
ISME J ; 7(3): 568-80, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23178665

ABSTRACT

Methanol biogeochemistry and its importance as a carbon source in seawater is relatively unexplored. We report the first microbial methanol carbon assimilation rates (k) in productive coastal upwelling waters of up to 0.117±0.002 d(-1) (~10 nmol l(-1 )d(-1)). On average, coastal upwelling waters were 11 times greater than open ocean northern temperate (NT) waters, eight times greater than gyre waters and four times greater than equatorial upwelling (EU) waters; suggesting that all upwelling waters upon reaching the surface (≤20 m), contain a microbial population that uses a relatively high amount of carbon (0.3-10 nmol l(-1 )d(-1)), derived from methanol, to support their growth. In open ocean Atlantic regions, microbial uptake of methanol into biomass was significantly lower, ranging between 0.04-0.68 nmol l(-1 )d(-1). Microbes in the Mauritanian coastal upwelling used up to 57% of the total methanol for assimilation of the carbon into cells, compared with an average of 12% in the EU, and 1% in NT and gyre waters. Several methylotrophic bacterial species were identified from open ocean Atlantic waters using PCR amplification of mxaF encoding methanol dehydrogenase, the key enzyme in bacterial methanol oxidation. These included Methylophaga sp., Burkholderiales sp., Methylococcaceae sp., Ancylobacter aquaticus, Paracoccus denitrificans, Methylophilus methylotrophus, Methylobacterium oryzae, Hyphomicrobium sp. and Methylosulfonomonas methylovora. Statistically significant correlations for upwelling waters between methanol uptake into cells and both chlorophyll a concentrations and methanol oxidation rates suggest that remotely sensed chlorophyll a images, in these productive areas, could be used to derive total methanol biological loss rates, a useful tool for atmospheric and marine climatically active gas modellers, and air-sea exchange scientists.


Subject(s)
Methanol/metabolism , Seawater/microbiology , Water Movements , Alcohol Oxidoreductases/genetics , Atlantic Ocean , Bacteria/genetics , Bacteria/metabolism , Bacterial Physiological Phenomena
4.
ISME J ; 3(9): 1093-104, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19474813

ABSTRACT

Microbial diversity in Movile Cave (Romania) was studied using bacterial and archaeal 16S rRNA gene sequence and functional gene analyses, including ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), soxB (sulfate thioesterase/thiohydrolase) and amoA (ammonia monooxygenase). Sulfur oxidizers from both Gammaproteobacteria and Betaproteobacteria were detected in 16S rRNA, soxB and RuBisCO gene libraries. DNA-based stable-isotope probing analyses using 13C-bicarbonate showed that Thiobacillus spp. were most active in assimilating CO2 and also implied that ammonia and nitrite oxidizers were active during incubations. Nitrosomonas spp. were detected in both 16S rRNA and amoA gene libraries from the 'heavy' DNA and sequences related to nitrite-oxidizing bacteria Nitrospira and Candidatus 'Nitrotoga' were also detected in the 'heavy' DNA, which suggests that ammonia/nitrite oxidation may be another major primary production process in this unique ecosystem. A significant number of sequences associated with known methylotrophs from the Betaproteobacteria were obtained, including Methylotenera, Methylophilus and Methylovorus, supporting the view that cycling of one-carbon compounds may be an important process within Movile Cave. Other sequences detected in the bacterial 16S rRNA clone library included Verrucomicrobia, Firmicutes, Bacteroidetes, alphaproteobacterial Rhodobacterales and gammaproteobacterial Xanthomonadales. Archaeal 16S rRNA sequences retrieved were restricted within two groups, namely the Deep-sea Hydrothermal Vent Euryarchaeota group and the Miscellaneous Crenarchaeotic group. No sequences related to known sulfur-oxidizing archaea, ammonia-oxidizing archaea, methanogens or anaerobic methane-oxidizing archaea were detected in this clone library. The results provided molecular biological evidence to support the hypothesis that Movile Cave is driven by chemolithoautotrophy, mainly through sulfur oxidation by sulfur-oxidizing bacteria and reveal that ammonia- and nitrite-oxidizing bacteria may also be major primary producers in Movile Cave.


Subject(s)
Archaea/classification , Bacteria/classification , Biodiversity , Chemoautotrophic Growth , Quaternary Ammonium Compounds/metabolism , Soil Microbiology , Sulfur/metabolism , Archaea/isolation & purification , Archaea/metabolism , Bacteria/isolation & purification , Bacteria/metabolism , Cluster Analysis , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Genes, rRNA , Molecular Sequence Data , Oxidoreductases/genetics , Phylogeny , RNA, Archaeal/genetics , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Ribulose-Bisphosphate Carboxylase/genetics , Romania , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid
5.
Microbiology (Reading) ; 142 ( Pt 5): 1289-1296, 1996 May.
Article in English | MEDLINE | ID: mdl-8704968

ABSTRACT

Methane is oxidized to methanol by the enzyme methane mono-oxygenase (MMO) in methanotrophic bacteria. In previous work, this multicomponent enzyme system has been extensively characterized at the biochemical and molecular level. Copper ions have been shown to irreversibly inhibit MMO activity in vivo and in vitro, but the effect of copper ions on transcription of the genes encoding the soluble (cytoplasmic) MMO (sMMO) has not previously been investigated. To examine more closely the regulation of bacterial methane oxidation and to determine the role of copper in this process, we have investigated transcriptional regulation of the sMMO gene cluster in the methanotrophic bacterium Methylococcus capsulatus (Bath). Using Northern blot analysis and primer extension experiments, it was shown that the six ORFs of the sMMO gene cluster are organized as an operon and the transcripts produced upon expression of this operon have been identified. The synthesis of these transcripts was under control of a single copper-regulated promoter, which is as yet not precisely defined.


Subject(s)
Bacterial Proteins/genetics , Copper/pharmacology , Gene Expression Regulation, Bacterial , Methane/metabolism , Methylococcaceae/genetics , Multienzyme Complexes/metabolism , Operon , Oxygenases/genetics , Bacterial Proteins/biosynthesis , Base Sequence , Enzyme Induction/drug effects , Gene Expression Regulation, Bacterial/drug effects , Methylococcaceae/drug effects , Methylococcaceae/enzymology , Molecular Sequence Data , Oxidation-Reduction , Oxygenases/biosynthesis , RNA, Bacterial/biosynthesis , RNA, Bacterial/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...