Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22281171

ABSTRACT

ObjectivesSotrovimab is one of several therapeutic agents that have been licensed to treat people at risk of severe outcomes following COVID-19 infection. However, there are concerns that it has reduced efficacy to treat people with the BA.2 sub-lineage of the Omicron (B.1.1.529) SARS-CoV-2 variant. We compared individuals with the BA.1 or BA.2 sub-lineage of the Omicron variant treated Sotrovimab in the community to assess their risk of hospital admission. MethodsWe performed a retrospective cohort study of individuals treated with Sotrovimab in the community and either had BA.1 or BA.2 variant classification. ResultsUsing a Stratified Cox regression model it was estimated that the hazard ratios (HR) of hospital admission with a length of stay of two or more days was 1.17 for BA.2 compared to BA.1 (95% CI 0.74-1.86) and for such admissions where COVID-19 ICD-10 codes was recorded the HR was 0.98 (95% CI 0.58-1.65). ConclusionThese results suggest that the risk of hospital admission is similar between BA.1 and BA.2 cases treated with Sotrovimab in the community.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21267006

ABSTRACT

BackgroundUnderstanding the duration and effectiveness of infection and vaccine-acquired SARS-CoV-2 immunity is essential to inform pandemic policy interventions, including the timing of vaccine-boosters. We investigated this in our large prospective cohort of UK healthcare workers undergoing routine asymptomatic PCR testing. MethodsWe assessed vaccine effectiveness (VE) (up to 10-months after first dose) and infection-acquired immunity by comparing time to PCR-confirmed infection in vaccinated and unvaccinated individuals using a Cox regression-model, adjusted by prior SARS-CoV-2 infection status, vaccine-manufacturer/dosing-interval, demographics and workplace exposures. ResultsOf 35,768 participants, 27% (n=9,488) had a prior SARS-CoV-2 infection. Vaccine coverage was high: 97% had two-doses (79% BNT162b2 long-interval, 8% BNT162b2 short-interval, 8% ChAdOx1). There were 2,747 primary infections and 210 reinfections between 07/12/2020 and 21/09/2021. Adjusted VE (aVE) decreased from 81% (95% CI 68%-89%) 14-73 days after dose-2 to 46% (95% CI 22%-63%) >6-months; with no significant difference for short-interval BNT162b2 but significantly lower aVE (50% (95% CI 18%-70%) 14-73 days after dose-2 from ChAdOx1. Protection from infection-acquired immunity showed evidence of waning in unvaccinated follow-up but remained consistently over 90% in those who received two doses of vaccine, even in those infected over 15-months ago. ConclusionTwo doses of BNT162b2 vaccination induce high short-term protection to SARS-CoV-2 infection, which wanes significantly after six months. Infection-acquired immunity boosted with vaccination remains high over a year after infection. Boosters will be essential to maintain protection in vaccinees who have not had primary infection to reduce infection and transmission in this population. Trial registration numberISRCTN11041050

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21249642

ABSTRACT

BackgroundThere is an urgent need to better understand whether individuals who have recovered from COVID-19 are protected from future SARS-CoV-2 infection. MethodsA large multi-centre prospective cohort was recruited from publicly funded hospital staff in the UK. Participants attended regular SARS-CoV-2 PCR and antibody testing (every 2-4 weeks) and completed fortnightly questionnaires on symptoms and exposures. At enrolment, participants were assigned to either the positive cohort (antibody positive or prior PCR/antibody test positive) or negative cohort (antibody negative, not previously known to be PCR/antibody positive). Potential reinfections were clinically reviewed and classified according to case definitions (confirmed, probable, possible (subdivided by symptom-status)) depending on hierarchy of evidence. Individuals in the primary infection were excluded from this analysis if infection was confirmed by antibody only. Reinfection rates in the positive cohort were compared against new PCR positives in the negative cohort using a mixed effective multivariable logistic regression analysis. FindingsBetween 18 June and 09 November 2020, 44 reinfections (2 probable, 42 possible) were detected in the baseline positive cohort of 6,614 participants, collectively contributing 1,339,078 days of follow-up. This compares with 318 new PCR positive infections and 94 antibody seroconversions in the negative cohort of 14,173 participants, contributing 1,868,646 days of follow-up. The incidence density per 100,000 person days between June and November 2020 was 3.3 reinfections in the positive cohort, compared with 22.4 new PCR confirmed infections in the negative cohort. The adjusted odds ratio was 0.17 for all reinfections (95% CI 0.13-0.24) compared to PCR confirmed primary infections. The median interval between primary infection and reinfection was over 160 days. InterpretationA prior history of SARS-CoV-2 infection was associated with an 83% lower risk of infection, with median protective effect observed five months following primary infection. This is the minimum likely effect as seroconversions were not included. FundingDepartment of Health and Social Care and Public Health England, with contributions from the Scottish, Welsh and Northern Irish governments.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-20247981

ABSTRACT

BackgroundThe overall risk of reinfection in individuals who have previously had COVID-19 is unknown. To determine if prior SARS-CoV-2 infection (as determined by at least one positive commercial antibody test performed in a laboratory) in healthcare workers confers future immunity to reinfection, we are undertaking a large-scale prospective longitudinal cohort study of healthcare staff across the United Kingdom. MethodsPopulation and Setting: staff members of healthcare organisations working in hospitals in the UK At recruitment, participants will have their serum tested for anti-SARS-CoV-2 at baseline and using these results will be initially allocated to either antibody positive or antibody negative cohorts. Participants will undergo antibody and viral RNA testing at 1-4 weekly intervals throughout the study period, and based on these results may move between cohorts. Any results from testing undertaken for other reasons (e.g. symptoms, contact tracing etc.) or prior to study entry will also be included. Individuals will complete enrolment and fortnightly questionnaires on exposures and symptoms. Follow-up will be for at least 12 months from study entry. OutcomeThe primary outcome of interest is a reinfection with SARS -CoV-2 during the study period. Secondary outcomes will include incidence and prevalence (both RNA and antibody) of SARS-CoV-2, viral genomics, viral culture, symptom history and antibody/neutralising antibody titres. ConclusionThis large study will help us to understand the impact of the presence of antibodies on the risk of reinfection with SARS-CoV-2; the results will have substantial implications in terms of national and international policy, as well as for risk management of contacts of COVID-19 cases. Trial RegistrationIRAS ID 284460, HRA and Health and Care Research Wales approval granted 22 May 2020.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-20201475

ABSTRACT

The COVID-19 pandemic has spread rapidly throughout the world. In the UK, the initial peak was in April 2020; in the county of Norfolk (UK) and surrounding areas, which has a stable, low-density population, over 3,200 cases were reported between March and August 2020. As part of the activities of the national COVID-19 Genomics Consortium (COG-UK) we undertook whole genome sequencing of the SARS-CoV-2 genomes present in positive clinical samples from the Norfolk region. These samples were collected by four major hospitals, multiple minor hospitals, care facilities and community organisations within Norfolk and surrounding areas. We combined clinical metadata with the sequencing data from regional SARS-CoV-2 genomes to understand the origins, genetic variation, transmission and expansion (spread) of the virus within the region and provide context nationally. Data were fed back into the national effort for pandemic management, whilst simultaneously being used to assist local outbreak analyses. Overall, 1,565 positive samples (172 per 100,000 population) from 1,376 cases were evaluated; for 140 cases between two and six samples were available providing longitudinal data. This represented 42.6% of all positive samples identified by hospital testing in the region and encompassed those with clinical need, and health and care workers and their families. 1,035 cases had genome sequences of sufficient quality to provide phylogenetic lineages. These genomes belonged to 26 distinct global lineages, indicating that there were multiple separate introductions into the region. Furthermore, 100 genetically-distinct UK lineages were detected demonstrating local evolution, at a rate of [~]2 SNPs per month, and multiple co-occurring lineages as the pandemic progressed. Our analysis: identified a sublineage associated with 6 care facilities; found no evidence of reinfection in longitudinal samples; ruled out a nosocomial outbreak; identified 16 lineages in key workers which were not in patients indicating infection control measures were effective; found the D614G spike protein mutation which is linked to increased transmissibility dominates the samples and rapidly confirmed relatedness of cases in an outbreak at a food processing facility. The large-scale genome sequencing of SARS-CoV-2-positive samples has provided valuable additional data for public health epidemiology in the Norfolk region, and will continue to help identify and untangle hidden transmission chains as the pandemic evolves. Major pointsIn Norfolk and surrounding regions O_LI100 distinct UK lineages were identified. C_LIO_LI16 UK lineages found in key workers were not observed in patients or in community care. C_LIO_LI172 genomes from SARS-CoV-2 positive samples sequenced per 100,000 population representing 42.6% of all positive cases. C_LIO_LISARS-CoV-2 genomes from 1035 cases sequenced to a high quality. C_LIO_LIOnly 5 countries, out of 103, have sequenced more SARS-CoV-2 genomes than have been sequenced in Norfolk for this paper. C_LIO_LISamples covered the entire first wave, March to August 2020. C_LIO_LIStable evolutionary rate of 2 SNPs per month. C_LIO_LID614G mutation is the dominant genotype and associated with increased transmission. C_LIO_LINo evidence of reinfection in 42 cases with longitudinal samples. C_LIO_LIWGS identified a sublineage associated with care facilities. C_LIO_LIWGS ruled out nosocomial outbreaks. C_LIO_LIRapid WGS confirmed the relatedness of cases from an outbreak at a food processing facility. C_LI

SELECTION OF CITATIONS
SEARCH DETAIL
...