Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 46(16): 5320-5325, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28382345

ABSTRACT

We report a detailed study of the host-guest interaction for a cationic metal-organic framework that can reversibly capture perchlorate. The structural transformation and flexibility of silver 4,4'-bipyridine nitrate (SBN) upon formation of silver 4,4'-bipyridine perchlorate (SBP) was evaluated by monitoring the anion exchange dynamics using a combination of powder X-ray diffraction (PXRD) with multinuclear 13C, 15N and 109Ag solid-state NMR spectra at different time intervals of the anion exchange. The structural transformation from SBN to SBP is complete within 70 minutes and was determined to take place by a solvent-mediated process. This pathway is confirmed by the morphological changes of the two crystalline materials observed by SEM. This key understanding may lead to application of this material towards perchlorate capture.

2.
Environ Sci Technol ; 50(4): 1949-54, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26765213

ABSTRACT

We report the capture of ppm-level aqueous perchlorate in record capacity and kinetics via the complete anion exchange of a cationic metal-organic framework. Ambient conditions were used for both the synthesis of silver 4,4'-bipyridine nitrate (SBN) and the exchange, forming silver 4,4'-bipyridine perchlorate (SBP). The exchange was complete within 90 min, and the capacity was 354 mg/g, representing 99% removal. These values are greater than current anion exchangers such as the resins Amberlite IRA-400 (249 mg/g), Purolite A530E (104 mg/g), and layered double hydroxides (28 mg/g). Moreover, unlike resins and layered double hydroxides, SBN is fully reusable and displays 96% regeneration to SBN in nitrate solution, with new crystal formation allowing the indefinite cycling for perchlorate. We show seven cycles as proof of concept. Perchlorate contamination of water represents a serious health threat because it is a thyroid endocrine disruptor. This noncomplexing anionic pollutant is significantly mobile and environmentally persistent. Removal of other anionic pollutants from water such as chromate, pertechnetate, or arsenate may be possible by this methodology.


Subject(s)
Cation Exchange Resins/chemistry , Metals/chemistry , Perchlorates/chemistry , Water Purification/methods , Water/chemistry , Hydroxides/chemistry , Kinetics , Nitrates , Solutions , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...