Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Min Eng ; 70(9): 41-46, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30393395

ABSTRACT

After industrial sand has been mined and processed, the finished product is typically loaded into small bags of 45 kg (100 lb) or less, large bulk bags of 454 to 1,361 kg (1,000 to 3,000 lb), or vehicles such as trucks or trains for transport to end users. As the sand is being transferred and loaded, dust can be released into the work environment, potentially exposing workers to respirable crystalline silica. A number of control technologies have been developed and utilized in an effort to reduce dust liberation during loading operations. For bulk loading into trucks or trains, the U.S. National Institute for Occupational Safety and Health (NIOSH) evaluated one of these technologies, the Dust Suppression Hopper (DSH), at two industrial sand processing plants. Results from these case studies show that the DSH reduced airborne respirable dust levels by 39 to 88 percent, depending upon the product size being loaded.

2.
Min Eng ; 69(9): 61-66, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28936001

ABSTRACT

Float coal dust is produced by various mining methods, carried by ventilating air and deposited on the floor, roof and ribs of mine airways. If deposited, float dust is re-entrained during a methane explosion. Without sufficient inert rock dust quantities, this float coal dust can propagate an explosion throughout mining entries. Consequently, controlling float coal dust is of critical interest to mining operations. Rock dusting, which is the adding of inert material to airway surfaces, is the main control technique currently used by the coal mining industry to reduce the float coal dust explosion hazard. To assist the industry in reducing this hazard, the Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health initiated a project to investigate methods and technologies to reduce float coal dust in underground coal mines through prevention, capture and suppression prior to deposition. Field characterization studies were performed to determine quantitatively the sources, types and amounts of dust produced during various coal mining processes. The operations chosen for study were a continuous miner section, a longwall section and a coal-handling facility. For each of these operations, the primary dust sources were confirmed to be the continuous mining machine, longwall shearer and conveyor belt transfer points, respectively. Respirable and total airborne float dust samples were collected and analyzed for each operation, and the ratio of total airborne float coal dust to respirable dust was calculated. During the continuous mining process, the ratio of total airborne float coal dust to respirable dust ranged from 10.3 to 13.8. The ratios measured on the longwall face were between 18.5 and 21.5. The total airborne float coal dust to respirable dust ratio observed during belt transport ranged between 7.5 and 21.8.

3.
Min Eng ; 68(12): 63-68, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28018004

ABSTRACT

Controlling float coal dust in underground coal mines before dispersal into the general airstream can reduce the risk of mine explosions while potentially achieving a more effective and efficient use of rock dust. A prototype flooded-bed scrubber was evaluated for float coal dust control in the return of a continuous miner section. The scrubber was installed inline between the face ventilation tubing and an exhausting auxiliary fan. Airborne and deposited dust mass measurements were collected over three days at set distances from the fan exhaust to assess changes in float coal dust levels in the return due to operation of the scrubber. Mass-based measurements were collected on a per-cut basis and normalized on the basis of per ton mined by the continuous miner. The results show that average float coal dust levels measured under baseline conditions were reduced by more than 90 percent when operating the scrubber.

4.
J Occup Environ Hyg ; 13(4): 284-92, 2016.
Article in English | MEDLINE | ID: mdl-26618374

ABSTRACT

Airborne coal dust mass measurements in underground bituminous coal mines can be challenged by the presence of airborne limestone dust, which is an incombustible dust applied to prevent the propagation of dust explosions. To accurately measure the coal portion of this mixed airborne dust, the National Institute for Occupational Safety and Health (NIOSH) developed a sampling and analysis protocol that used a stainless steel cassette adapted with an isokinetic inlet and the low temperature ashing (LTA) analytical method. The Mine Safety and Health Administration (MSHA) routinely utilizes this LTA method to quantify the incombustible content of bulk dust samples collected from the roof, floor, and ribs of mining entries. The use of the stainless steel cassette with isokinetic inlet allowed NIOSH to adopt the LTA method for the analysis of airborne dust samples. Mixtures of known coal and limestone dust masses were prepared in the laboratory, loaded into the stainless steel cassettes, and analyzed to assess the accuracy of this method. Coal dust mass measurements differed from predicted values by an average of 0.5%, 0.2%, and 0.1% for samples containing 20%, 91%, and 95% limestone dust, respectively. The ability of this method to accurately quantify the laboratory samples confirmed the validity of this method and allowed NIOSH to successfully measure the coal fraction of airborne dust samples collected in an underground coal mine.


Subject(s)
Calcium Carbonate/analysis , Coal Mining , Coal/analysis , Dust/analysis , Particulate Matter/analysis , Air Pollutants, Occupational/analysis , Environmental Monitoring/instrumentation , National Institute for Occupational Safety and Health, U.S. , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...