Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 24(10): 9594-9604, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28247272

ABSTRACT

This study investigates the retention of biodiesel in residual clayey soil during biostimulation by nutrients (nitrogen, phosphorus, and potassium) under conditions of rainfall infiltration. Several column tests were conducted in a laboratory under different void ratios (1.14, 1.24, and 1.34), varying moisture contents (15, 25, and 35%), and in both the presence and absence of biostimulation. The volume of biodiesel (which was equivalent to the volume of voids in the soil) was placed atop the soil and allowed to percolate for a period of 15 days. The soil was subjected to different rainfall infiltration conditions (0.30 or 60 mm). The greatest reductions in residual contaminants occurred after 60 mm of rain simulation, at values of up to 74% less than in samples with the same conditions but no precipitation. However, the residual contamination decay rate was greater with 0-30 mm (0.29 g/mm) of precipitation than with 30-60 mm (0.075 g/mm). Statistical assessment revealed that increased moisture and the presence of nutrients were the factors with the most powerful effect on contaminant retention in the soil. The residual contaminant level was 21 g/kg at a moisture content of 15% and no precipitation, decreasing to 12 g/kg at 35% moisture and no precipitation. Accordingly, it is possible to conclude that biostimulation and rainfall infiltration conditions can decrease the retention of contaminants in soil and allow a greater leaching or spreading of the contamination. All of these phenomena are worthy of careful examination for the in situ bioremediation of organic contamination. HIGHLIGHTS: • The higher moisture in the soil, due to a high initial moisture content and/or infiltration of rainfall, can reduce contaminant retention, • The use of biostimulation through the addition of nutrients to accelerate the biodegradation of toxic organic contaminants may induce inadvertent undesirable interactions between the soil and the contaminant. • When adopting biostimulation for bioremediation, the effects of rainfall should be addressed; ideally, it should be prevented from entering the affected site, in order to avoid increased contaminant leaching and potential spreading.


Subject(s)
Biofuels , Soil , Biodegradation, Environmental , Rain , Soil Pollutants
2.
Article in English | MEDLINE | ID: mdl-22755529

ABSTRACT

The inappropriate discharge of wastewater containing high concentrations of toxic metals is a serious threat to the environment. Given that the microalga Spirulina platensis has demonstrated a capacity for chromium VI (Cr (VI) biosorption, we assessed the ideal concentration of chromium-containing wastewater required for maximum removal of Cr (VI) and chemical oxygen demand (COD) from the environment by using this microalga. The Paracas and Leb-52 strains of S. platensis, with initial wastewater concentrations of 0%, 12.5%, 25%, and 50%, were cultured in Zarrouk medium diluted to 50% under controlled air, temperature, and lighting conditions. The cultures were maintained for 28 days, and pH, biomass growth, COD, and Cr (VI) were assessed. The wastewater concentration influenced microalgal growth, especially at high concentrations. Removal of 82.19% COD and 60.92% Cr (VI) was obtained, but the COD removal was greater than the Cr (VI) removal in both strains of S. platensis.


Subject(s)
Biological Oxygen Demand Analysis/methods , Chromium/metabolism , Cyanobacteria/metabolism , Biodegradation, Environmental
SELECTION OF CITATIONS
SEARCH DETAIL
...