Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 17(5)2024 May 14.
Article in English | MEDLINE | ID: mdl-38794199

ABSTRACT

Radiotherapy treatment plans have become highly conformal, posing additional constraints on the accuracy of treatment delivery. Here, we explore the use of radiation-sensitive ultrasound contrast agents (superheated phase-change nanodroplets) as dosimetric radiation sensors. In a series of experiments, we irradiated perfluorobutane nanodroplets dispersed in gel phantoms at various temperatures and assessed the radiation-induced nanodroplet vaporization events using offline or online ultrasound imaging. At 25 °C and 37 °C, the nanodroplet response was only present at higher photon energies (≥10 MV) and limited to <2 vaporization events per cm2 per Gy. A strong response (~2000 vaporizations per cm2 per Gy) was observed at 65 °C, suggesting radiation-induced nucleation of the droplet core at a sufficiently high degree of superheat. These results emphasize the need for alternative nanodroplet formulations, with a more volatile perfluorocarbon core, to enable in vivo photon dosimetry. The current nanodroplet formulation carries potential as an innovative gel dosimeter if an appropriate gel matrix can be found to ensure reproducibility. Eventually, the proposed technology might unlock unprecedented temporal and spatial resolution in image-based dosimetry, thanks to the combination of high-frame-rate ultrasound imaging and the detection of individual vaporization events, thereby addressing some of the burning challenges of new radiotherapy innovations.

2.
Med Phys ; 50(7): 4562-4577, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36856326

ABSTRACT

BACKGROUND: The safety and efficacy of proton therapy is currently hampered by range uncertainties. The combination of ultrasound imaging with injectable radiation-sensitive superheated nanodroplets was recently proposed for in vivo range verification. The proton range can be estimated from the distribution of nanodroplet vaporization events, which is stochastically related to the stopping distribution of protons, as nanodroplets are vaporized by protons reaching their maximal LET at the end of their range. PURPOSE: Here, we aim to estimate the range estimation precision of this technique. As for any stochastic measurement, the precision will increase with the sample size, that is, the number of detected vaporizations. Thus, we first develop and validate a model to predict the number of vaporizations, which is then applied to estimate the range verification precision for a set of conditions (droplet size, droplet concentration, and proton beam parameters). METHODS: Starting from the thermal spike theory, we derived a model that predicts the expected number of droplet vaporizations in an irradiated sample as a function of the droplet size, concentration, and number of protons. The model was validated by irradiating phantoms consisting of size-sorted perfluorobutane droplets dispersed in an aqueous matrix. The number of protons was counted with an ionization chamber, and the droplet vaporizations were recorded and counted individually using high frame rate ultrasound imaging. After validation, the range estimate precision was determined for different conditions using a Monte Carlo algorithm. RESULTS: A good agreement between theory and experiments was observed for the number of vaporizations, especially for large (5.8 ± 2.2 µm) and medium (3.5 ± 1.1 µm) sized droplets. The number of events was lower than expected in phantoms with small droplets (2.0 ± 0.7 µm), but still within the same order of magnitude. The inter-phantom variability was considerably larger (up to 30x) than predicted by the model. The validated model was then combined with Monte Carlo simulations, which predicted a theoretical range retrieval precision improving with the square-root of the number of vaporizations, and degrading at high beam energies due to range straggling. For single pencil beams with energies between 70 and 240 MeV, a range verification precision below 1% of the range required perfluorocarbon concentrations in the order of 0.3-2.4 µM. CONCLUSION: We proposed and experimentally validated a model to provide a quick estimate of the number of vaporizations for a given set of conditions (droplet size, droplet concentration, and proton beam parameters). From this model, promising range verification performances were predicted for realistic perfluorocarbon concentrations. These findings are an incentive to move towards preclinical studies, which are critical to assess the achievable droplet distribution in and around the tumor, and hence the in vivo range verification precision.


Subject(s)
Proton Therapy , Protons , Volatilization , Proton Therapy/methods , Algorithms , Phantoms, Imaging , Monte Carlo Method , Ultrasonography
3.
Ultrasound Med Biol ; 49(1): 388-397, 2023 01.
Article in English | MEDLINE | ID: mdl-36241587

ABSTRACT

Ultrasound contrast-mediated medical imaging and therapy both rely on the dynamics of micron- and nanometer-sized ultrasound cavitation nuclei, such as phospholipid-coated microbubbles and phase-change droplets. Ultrasound cavitation nuclei respond non-linearly to ultrasound on a nanosecond time scale that necessitates the use of ultra-high-speed imaging to fully visualize these dynamics in detail. In this study, we developed an ultra-high-speed optical imaging system that can record up to 20 million frames per second (Mfps) by coupling two small-sized, commercially available, 10-Mfps cameras. The timing and reliability of the interleaved cameras needed to achieve 20 Mfps was validated using two synchronized light-emitting diode strobe lights. Once verified, ultrasound-activated microbubble responses were recorded and analyzed. A unique characteristic of this coupled system is its ability to be reconfigured to provide orthogonal observations at 10 Mfps. Acoustic droplet vaporization was imaged from two orthogonal views, by which the 3-D dynamics of the phase transition could be visualized. This optical imaging system provides the temporal resolution and experimental flexibility needed to further elucidate the dynamics of ultrasound cavitation nuclei to potentiate the clinical translation of ultrasound-mediated imaging and therapy developments.


Subject(s)
Contrast Media , Microbubbles , Reproducibility of Results , Ultrasonography , Volatilization
4.
Phys Med Biol ; 67(11)2022 05 27.
Article in English | MEDLINE | ID: mdl-35508145

ABSTRACT

Objective.External beam radiotherapy is aimed to precisely deliver a high radiation dose to malignancies, while optimally sparing surrounding healthy tissues. With the advent of increasingly complex treatment plans, the delivery should preferably be verified by quality assurance methods. Recently, online ultrasound imaging of vaporized radiosensitive nanodroplets was proposed as a promising tool forin vivodosimetry in radiotherapy. Previously, the detection of sparse vaporization events was achieved by applying differential ultrasound (US) imaging followed by intensity thresholding using subjective parameter tuning, which is sensitive to image artifacts.Approach. A generalized deep learning solution (i.e. BubbleNet) is proposed to localize vaporized nanodroplets on differential US frames, while overcoming the aforementioned limitation. A 5-fold cross-validation was performed on a diversely composed 5747-frame training/validation dataset by manual segmentation. BubbleNet was then applied on a test dataset of 1536 differential US frames to evaluate dosimetric features. The intra-observer variability was determined by scoring the Dice similarity coefficient (DSC) on 150 frames segmented twice. Additionally, the BubbleNet generalization capability was tested on an external test dataset of 432 frames acquired by a phased array transducer at a much lower ultrasound frequency and reconstructed with unconventional pixel dimensions with respect to the training dataset.Main results.The median DSC in the 5-fold cross validation was equal to ∼0.88, which was in line with the intra-observer variability (=0.86). Next, BubbleNet was employed to detect vaporizations in differential US frames obtained during the irradiation of phantoms with a 154 MeV proton beam or a 6 MV photon beam. BubbleNet improved the bubble-count statistics by ∼30% compared to the earlier established intensity-weighted thresholding. The proton range was verified with a -0.8 mm accuracy.Significance.BubbleNet is a flexible tool to localize individual vaporized nanodroplets on experimentally acquired US images, which improves the sensitivity compared to former thresholding-weighted methods.


Subject(s)
Deep Learning , Image Processing, Computer-Assisted , Microbubbles , Phantoms, Imaging , Protons , Ultrasonography
5.
Article in English | MEDLINE | ID: mdl-35385380

ABSTRACT

Superheated nanodroplet (ND) vaporization by proton radiation was recently demonstrated, opening the door to ultrasound-based in vivo proton range verification. However, at body temperature and physiological pressures, perfluorobutane nanodroplets (PFB-NDs), which offer a good compromise between stability and radiation sensitivity, are not directly sensitive to primary protons. Instead, they are vaporized by infrequent secondary particles, which limits the precision for range verification. The radiation-induced vaporization threshold (i.e., sensitization threshold) can be reduced by lowering the pressure in the droplet such that ND vaporization by primary protons can occur. Here, we propose to use an acoustic field to modulate the pressure, intermittently lowering the proton sensitization threshold of PFB-NDs during the rarefactional phase of the ultrasound wave. Simultaneous proton irradiation and sonication with a 1.1 MHz focused transducer, using increasing peak negative pressures (PNPs), were applied on a dilution of PFB-NDs flowing in a tube, while vaporization was acoustically monitored with a linear array. Sensitization to primary protons was achieved at temperatures between [Formula: see text] and 40 °C using acoustic PNPs of relatively low amplitude (from 800 to 200 kPa, respectively), while sonication alone did not lead to ND vaporization at those PNPs. Sensitization was also measured at the clinically relevant body temperature (i.e., 37 °C) using a PNP of 400 kPa. These findings confirm that acoustic modulation lowers the sensitization threshold of superheated NDs, enabling a direct proton response at body temperature.


Subject(s)
Fluorocarbons , Protons , Acoustics , Body Temperature , Ultrasonography , Volatilization
6.
Ultrasound Med Biol ; 48(1): 149-156, 2022 01.
Article in English | MEDLINE | ID: mdl-34629191

ABSTRACT

The potential of proton therapy to improve the conformity of the delivered dose to the tumor volume is currently limited by range uncertainties. Injectable superheated nanodroplets have recently been proposed for ultrasound-based in vivo range verification, as these vaporize into echogenic microbubbles on proton irradiation. In previous studies, offline ultrasound images of phantoms with dispersed nanodroplets were acquired after irradiation, relating the induced vaporization profiles to the proton range. However, the aforementioned method did not enable the counting of individual vaporization events, and offline imaging cannot provide real-time feedback. In this study, we overcame these limitations using high-frame-rate ultrasound imaging with a linear array during proton irradiation of phantoms with dispersed perfluorobutane nanodroplets at 37°C and 50°C. Differential image analysis of subsequent frames allowed us to count individual vaporization events and to localize them with a resolution beyond the ultrasound diffraction limit, enabling spatial and temporal quantification of the interaction between ionizing radiation and nanodroplets. Vaporization maps were found to accurately correlate with the stopping distribution of protons (at 50°C) or secondary particles (at both temperatures). Furthermore, a linear relationship between the vaporization count and the number of incoming protons was observed. These results indicate the potential of real-time high-frame-rate contrast-enhanced ultrasound imaging for proton range verification and dosimetry.


Subject(s)
Microbubbles , Protons , Phantoms, Imaging , Ultrasonography , Volatilization
7.
Rev Sci Instrum ; 92(3): 035110, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33820052

ABSTRACT

Monodisperse lipid-coated microbubbles are a promising route to unlock the full potential of ultrasound contrast agents for medical diagnosis and therapy. Here, we present a stand-alone lab-on-a-chip instrument that allows microbubbles to be formed with high monodispersity at high production rates. Key to maintaining a long-term stable, controlled, and safe operation of the microfluidic device with full control over the output size distribution is an optical transmission-based measurement technique that provides real-time information on the production rate and bubble size. We feed the data into a feedback loop and demonstrate that this system can control the on-chip bubble radius (2.5 µm-20 µm) and the production rate up to 106 bubbles/s. The freshly formed phospholipid-coated bubbles stabilize after their formation to a size approximately two times smaller than their initial on-chip bubble size without loss of monodispersity. The feedback control technique allows for full control over the size distribution of the agent and can aid the development of microfluidic platforms operated by non-specialist end users.

8.
Ultrasound Med Biol ; 47(7): 1857-1867, 2021 07.
Article in English | MEDLINE | ID: mdl-33810887

ABSTRACT

Collateral damage to healthy surrounding tissue during conventional radiotherapy increases when deviations from the treatment plan occur. Ultrasound contrast agents (UCAs) are a possible candidate for radiation dose monitoring. This study investigated the size distribution and acoustic response of two commercial formulations, SonoVue/Lumason and Definity/Luminity, as a function of dose on clinical megavoltage photon beam exposure (24 Gy). SonoVue samples exhibited a decrease in concentration of bubbles smaller than 7 µm, together with an increase in acoustic attenuation and a decrease in acoustic scattering. Definity samples did not exhibit a significant response to radiation, suggesting that the effect of megavoltage photons depends on the UCA formulation. For SonoVue, the influence of the megavoltage photon beam was especially apparent at the second harmonic frequency, and can be captured using pulse inversion and amplitude modulation (3.5-dB decrease for the maximum dose), which could eventually be used for dosimetry in a well-controlled environment.


Subject(s)
Contrast Media/radiation effects , Fluorocarbons/radiation effects , Phospholipids/radiation effects , Radiotherapy/methods , Sulfur Hexafluoride/radiation effects , Acoustics , Radiotherapy Dosage
9.
Pharmaceutics ; 13(1)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33477843

ABSTRACT

Phospholipid-coated microbubbles are ultrasound contrast agents that can be employed for ultrasound molecular imaging and drug delivery. For safe and effective implementation, microbubbles must respond uniformly and predictably to ultrasound. Therefore, we investigated how lipid handling and phase distribution affected the variability in the acoustic behavior of microbubbles. Cholesterol was used to modify the lateral molecular packing of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)-based microbubbles. To assess the effect of lipid handling, microbubbles were produced by a direct method, i.e., lipids directly dispersed in an aqueous medium or indirect method, i.e., lipids first dissolved in an organic solvent. The lipid phase and ligand distribution in the microbubble coating were investigated using confocal microscopy, and the acoustic response was recorded with the Brandaris 128 ultra-high-speed camera. In microbubbles with 12 mol% cholesterol, the lipids were miscible and all in the same phase, which resulted in more buckle formation, lower shell elasticity and higher shell viscosity. Indirect DSPC microbubbles had a more uniform response to ultrasound than direct DSPC and indirect DSPC-cholesterol microbubbles. The difference in lipid handling between direct and indirect DSPC microbubbles significantly affected the acoustic behavior. Indirect DSPC microbubbles are the most promising candidate for ultrasound molecular imaging and drug delivery applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...