Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 55(4): 1662-70, 2012 Feb 23.
Article in English | MEDLINE | ID: mdl-22257165

ABSTRACT

The synthesis and biological activity of a new series of LpxC inhibitors represented by pyridone methylsulfone hydroxamate 2a is presented. Members of this series have improved solubility and free fraction when compared to compounds in the previously described biphenyl methylsulfone hydroxamate series, and they maintain superior Gram-negative antibacterial activity to comparator agents.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/chemical synthesis , Gram-Negative Bacteria/drug effects , Gram-Negative Bacterial Infections/drug therapy , Hydroxamic Acids/chemical synthesis , Pyridones/chemical synthesis , Sulfonic Acids/chemical synthesis , Animals , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Crystallography, X-Ray , Humans , Hydroxamic Acids/pharmacokinetics , Hydroxamic Acids/pharmacology , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Protein Conformation , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Pyridones/pharmacokinetics , Pyridones/pharmacology , Rats , Stereoisomerism , Structure-Activity Relationship , Sulfonic Acids/pharmacokinetics , Sulfonic Acids/pharmacology
2.
J Med Chem ; 55(2): 914-23, 2012 Jan 26.
Article in English | MEDLINE | ID: mdl-22175825
3.
ACS Med Chem Lett ; 3(5): 433-5, 2012 May 10.
Article in English | MEDLINE | ID: mdl-24900489

ABSTRACT

When stable atropisomers are encountered by drug discovery teams, they can have important implications due to potential differences in their biological activity, pharmacokinetics, and toxicity. Knowledge of an atropisomer's activation parameters for interconversion is required to facilitate informed decisions on how to proceed. Herein, we communicate the development of a new method for the rapid measurement of atropisomer racemization kinetics utilizing segmented flow technology. This method leverages the speed, accuracy, low sample requirement, safety, and semiautomated nature of flow instrumentation to facilitate the acquisition of kinetics data required for experimentally probing atropisomer activation parameters. Measured kinetics data obtained for the atropo isomerization of AMPA antagonist CP-465021 using segmented flow and traditional thermal methods were compared to validate the method.

4.
Bioorg Med Chem Lett ; 20(3): 1114-7, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20031410

ABSTRACT

Preclinical studies suggest that compounds with dual norepinephrine reuptake inhibitor (NRI) and 5-HT(1A) partial agonist properties may provide an important new therapeutic approach to ADHD, depression, and anxiety. Reported herein is the discovery of a novel chemical series with a favorable NRI and 5-HT(1A) partial agonist pharmacological profile as well as excellent selectivity for the norepinephrine transporter over the dopamine transporter.


Subject(s)
Adrenergic Uptake Inhibitors/chemical synthesis , Drug Design , Norepinephrine Plasma Membrane Transport Proteins/antagonists & inhibitors , Pyridines/chemical synthesis , Serotonin 5-HT1 Receptor Agonists , Serotonin Receptor Agonists/chemical synthesis , Adrenergic Uptake Inhibitors/metabolism , Adrenergic Uptake Inhibitors/pharmacology , Cell Line , Crystallography, X-Ray , Drug Evaluation, Preclinical/methods , Humans , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Phenols/chemical synthesis , Phenols/metabolism , Phenols/pharmacology , Pyridines/metabolism , Pyridines/pharmacology , Receptor, Serotonin, 5-HT1A/metabolism , Serotonin Receptor Agonists/metabolism , Serotonin Receptor Agonists/pharmacology
5.
Bioorg Med Chem Lett ; 12(13): 1743-6, 2002 Jul 08.
Article in English | MEDLINE | ID: mdl-12067551

ABSTRACT

Imidazole glycerol phosphate dehydratase (IGPD) has become an attractive target for herbicide discovery since it is present in plants and not in mammals. Currently no knowledge is available on the 3-D structure of the IGPD active site. Therefore, we used a pharmacophore model based on known inhibitors and 3-D database searches to identify new active compounds. In vitro testing of compounds from the database searches led to the identification of a class of pyrrole aldehydes as novel inhibitors of IGPD.


Subject(s)
Enzyme Inhibitors/chemistry , Hydro-Lyases/antagonists & inhibitors , Hydro-Lyases/chemistry , Pyrroles/chemistry , Triazoles/chemistry , Aldehydes/analysis , Aldehydes/chemistry , Binding Sites , Databases, Factual , Herbicides/chemistry , Inhibitory Concentration 50 , Models, Chemical , Molecular Conformation , Pyrroles/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...