Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 115(6): 767-76, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17657470

ABSTRACT

Submergence stress regularly affects 15 million hectares or more of rainfed lowland rice areas in South and Southeast Asia. A major QTL on chromosome 9, Sub1, has provided the opportunity to apply marker assisted backcrossing (MAB) to develop submergence tolerant versions of rice cultivars that are widely grown in the region. In the present study, molecular markers that were tightly linked with Sub1, flanking Sub1, and unlinked to Sub1 were used to apply foreground, recombinant, and background selection, respectively, in backcrosses between a submergence-tolerant donor and the widely grown recurrent parent Swarna. By the BC(2)F(2) generation a submergence tolerant plant was identified that possessed Swarna type simple sequence repeat (SSR) alleles on all fragments analyzed except the tip segment of rice chromosome 9 that possessed the Sub1 locus. A BC(3)F(2) double recombinant plant was identified that was homozygous for all Swarna type alleles except for an approximately 2.3-3.4 Mb region surrounding the Sub1 locus. The results showed that the mega variety Swarna could be efficiently converted to a submergence tolerant variety in three backcross generations, involving a time of two to three years. Polymorphic markers for foreground and recombinant selection were identified for four other mega varieties to develop a wider range of submergence tolerant varieties to meet the needs of farmers in the flood-prone regions. This approach demonstrates the effective use of marker assisted selection for a major QTL in a molecular breeding program.


Subject(s)
Inbreeding , Oryza/genetics , Quantitative Trait Loci , Genes, Plant , Genetic Linkage , Genetic Markers , Oryza/physiology , Polymorphism, Genetic , Recombination, Genetic
2.
Theor Appl Genet ; 107(4): 719-29, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12768241

ABSTRACT

Accessions from Cicer echinospermum, a wild relative of chickpea (Cicer arietinum L.), contain resistance to the fungal disease ascochyta blight, a devastating disease of chickpea. A linkage map was constructed based on an interspecific F(2) population, derived from a cross between a susceptible chickpea cultivar (Lasseter) and a resistant C. echinospermum accession (PI 527930). The linkage map incorporated 83 molecular markers, that included RAPD, ISSR, STMS and RGA markers; eight markers remained unlinked. The map comprised eight linkage groups and covered a map distance of 570 cM. Six out of the eight linkage groups were correlated to linkage groups from the integrated Cicer map using STMS markers. Quantitative trait loci (QTLs) associated with ascochyta blight resistance were detected using interval mapping and single-point analysis. The F(2) population was evaluated for seedling and stem resistance in glasshouse trials. At least two QTLs were identified for seedling resistance, both of which were located within linkage group 4. Five markers were associated with stem resistance, four of which were also associated with seedling resistance. QTLs from previous studies also mapped to LG 4, suggesting that this linkage group is an important region of the Cicer genome for resistance to ascochyta blight.


Subject(s)
Ascomycota/pathogenicity , Cicer/genetics , Cicer/microbiology , Chromosome Mapping , Cicer/growth & development , Crosses, Genetic , DNA, Plant/genetics , Germination , Phenotype , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Stems/genetics , Plant Stems/microbiology , Quantitative Trait Loci , Seedlings/genetics , Seedlings/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...