Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 139(3): 384-398, 2022 01 20.
Article in English | MEDLINE | ID: mdl-34232979

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is the most frequent lymphoid malignancy affecting adults. The NF-κB transcription factor family is activated by 2 main pathways, the canonical and the alternative NF-κB activation pathway, with different functions. The alternative NF-κB pathway leads to activation of the transcriptionally active RelB NF-κB subunit. Alternative NF-κB activation status and its role in DLBCL pathogenesis remain undefined. Here, we reveal a frequent activation of RelB in a large cohort of DLBCL patients and cell lines, independently of their activated B-cell-like or germinal center B-cell-like subtype. RelB activity defines a new subset of patients with DLBCL and a peculiar gene expression profile and mutational pattern. Importantly, RelB activation does not correlate with the MCD genetic subtype, enriched for activated B-cell-like tumors carrying MYD88L265P and CD79B mutations that cooperatively activate canonical NF-κB, thus indicating that current genetic tools to evaluate NF-κB activity in DLBCL do not provide information on the alternative NF-κB activation. Furthermore, the newly defined RelB-positive subgroup of patients with DLBCL exhibits a dismal outcome after immunochemotherapy. Functional studies revealed that RelB confers DLBCL cell resistance to DNA damage-induced apoptosis in response to doxorubicin, a genotoxic agent used in the front-line treatment of DLBCL. We also show that RelB positivity is associated with high expression of cellular inhibitor of apoptosis protein 2 (cIAP2). Altogether, RelB activation can be used to refine the prognostic stratification of DLBCL and may contribute to subvert the therapeutic DNA damage response in a segment of patients with DLBCL.


Subject(s)
Lymphoma, Large B-Cell, Diffuse/metabolism , NF-kappa B/metabolism , Transcription Factor RelB/metabolism , Apoptosis , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Lymphoma, Large B-Cell, Diffuse/genetics , NF-kappa B/genetics , Transcription Factor RelB/genetics , Transcriptional Activation
2.
Front Oncol ; 11: 638897, 2021.
Article in English | MEDLINE | ID: mdl-33959502

ABSTRACT

Relationships between c-Rel and GCB-DLBCLs remain unclear. We found that strong c-Rel DNA-binding activity was mostly found in GCBs on two independent series of 48 DLBCLs and 66 DLBCLs, the latter issued from the GHEDI series. c-Rel DNA-binding activity was associated with increased REL mRNA expression. Extending the study to the whole GHEDI and Lenz DLBCL published series of 202 and 233 cases, it was found that the c-Rel gene expression profile (GEP) overlapped partially (12%) but only with the GCB GEP and not with the GEP of ABC-DLBCLs. Cases with both overexpression of REL mRNA and c-Rel GEP were defined as those having a c-Rel signature. These cases were GCBs in 88 and 83% of the GHEDI or Lenz's DLBCL series respectively. The c-Rel signature was also associated with various recurrent GCB-DLBCL genetic events, including REL gains, BCL2 translocation, MEF2B, EZH2, CREBBP, and TNFRSF14 mutations and with the EZB GCB genetic subtype. By CGH array, the c-Rel signature was specifically correlated with 2p15-16.1 amplification that includes XPO1, BCL11A, and USP34 and with the 22q11.22 deletion that covers IGLL5 and PRAME. The total number of gene copy number aberrations, so-called genomic imbalance complexity, was decreased in cases with the c-Rel signature. These cases exhibited a better overall survival. Functionally, overexpression of c-Rel induced its constitutive nuclear localization and protected cells against apoptosis while its repression tended to increase cell death. These results show that, clinically and biologically, c-Rel is the pivotal NF-κB subunit in the GCB-DLBCL subgroup. Functionally, c-Rel overexpression could directly promote DLBCL tumorigenesis without need for further activation signals.

3.
Eur J Immunol ; 50(7): 972-985, 2020 07.
Article in English | MEDLINE | ID: mdl-32012260

ABSTRACT

Several drugs targeting members of the TNF superfamily or TNF receptor superfamily (TNFRSF) are widely used in medicine or are currently being tested in therapeutic trials. However, their mechanism of action remains poorly understood. Here, we explored the effects of TNFRSF co-stimulation on murine Foxp3+ regulatory T cell (Treg) biology, as they are pivotal modulators of immune responses. We show that engagement of TNFR2, 4-1BB, GITR, and DR3, but not OX40, increases Treg proliferation and survival. Triggering these TNFRSF in Tregs induces similar changes in gene expression patterns, suggesting that they engage common signal transduction pathways. Among them, we identified a major role of canonical NF-κB. Importantly, TNFRSF co-stimulation improves the ability of Tregs to suppress colitis. Our data demonstrate that stimulation of discrete TNFRSF members enhances Treg activation and function through a shared mechanism. Consequently, therapeutic effects of drugs targeting TNFRSF or their ligands may be mediated by their effect on Tregs.


Subject(s)
Lymphocyte Activation , NF-kappa B/immunology , Receptors, Tumor Necrosis Factor/immunology , Signal Transduction/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Mice , Mice, Knockout , NF-kappa B/genetics , Receptors, Tumor Necrosis Factor/genetics , Signal Transduction/genetics , T-Lymphocytes, Regulatory/cytology
4.
Front Immunol ; 10: 2487, 2019.
Article in English | MEDLINE | ID: mdl-31749798

ABSTRACT

Regulatory T cells (Tregs) play a major role in immune homeostasis and in the prevention of autoimmune diseases. It has been shown that c-Rel is critical in Treg thymic differentiation, but little is known on the role of NF-κB on mature Treg biology. We thus generated mice with a specific knockout of RelA, a key member of NF-κB, in Tregs. These mice developed a severe autoimmune syndrome with multi-organ immune infiltration and high activation of lymphoid and myeloid cells. Phenotypic and transcriptomic analyses showed that RelA is critical in the acquisition of the effector Treg state independently of surrounding inflammatory environment. Unexpectedly, RelA-deficient Tregs also displayed reduced stability and cells that had lost Foxp3 produced inflammatory cytokines. Overall, we show that RelA is critical for Treg biology as it promotes both the generation of their effector phenotype and the maintenance of their identity.


Subject(s)
Immunomodulation , Lymphocyte Activation/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Transcription Factor RelA/metabolism , Animals , Biomarkers , Cytokines/genetics , Cytokines/metabolism , Gene Expression Regulation , Immunomodulation/genetics , Immunophenotyping , Lymphocyte Activation/genetics , Mice , Mice, Knockout , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Transcription Factor RelA/chemistry
5.
Cancer Immunol Res ; 7(11): 1789-1802, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31488404

ABSTRACT

Immune resistance may arise from both genetic instability and tumor heterogeneity. Microenvironmental stresses such as hypoxia and various resistance mechanisms promote carcinoma cell plasticity. AXL, a member of the TAM (Tyro3, Axl, and Mer) receptor tyrosine kinase family, is widely expressed in human cancers and increasingly recognized for its role in cell plasticity and drug resistance. To investigate mechanisms of immune resistance, we studied multiple human lung cancer clones derived from a model of hypoxia-induced tumor plasticity that exhibited mesenchymal or epithelial features. We demonstrate that AXL expression is increased in mesenchymal lung cancer clones. Expression of AXL in the cells correlated with increased cancer cell-intrinsic resistance to both natural killer (NK)- and cytotoxic T lymphocyte (CTL)-mediated killing. A small-molecule targeting AXL sensitized mesenchymal lung cancer cells to cytotoxic lymphocyte-mediated killing. Mechanistically, we showed that attenuation of AXL-dependent immune resistance involved a molecular network comprising NF-κB activation, increased ICAM1 expression, and upregulation of ULBP1 expression coupled with MAPK inhibition. Higher ICAM1 and ULBP1 tumor expression correlated with improved patient survival in two non-small cell lung cancer (NSCLC) cohorts. These results reveal an AXL-mediated immune-escape regulatory pathway, suggest AXL as a candidate biomarker for tumor resistance to NK and CTL immunity, and support AXL targeting to optimize immune response in NSCLC.


Subject(s)
Killer Cells, Natural/immunology , Lung Neoplasms/immunology , Proto-Oncogene Proteins/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , T-Lymphocytes, Cytotoxic/immunology , Tumor Escape/drug effects , Antineoplastic Agents/pharmacology , Cytotoxicity, Immunologic , Epithelial-Mesenchymal Transition/drug effects , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Gene Expression Regulation, Neoplastic , Humans , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/immunology , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/immunology , Signal Transduction/drug effects , Survival Analysis , Tumor Cells, Cultured , Axl Receptor Tyrosine Kinase
6.
Cells ; 5(2)2016 May 04.
Article in English | MEDLINE | ID: mdl-27153093

ABSTRACT

The family of NF-κB transcription factors plays a key role in diverse biological processes, such as inflammatory and immune responses, cell survival and tumor development. Beyond the classical NF-κB activation pathway, a second NF-κB pathway has more recently been uncovered, the so-called alternative NF-κB activation pathway. It has been shown that this pathway mainly controls the activity of RelB, a member of the NF-κB family. Post-translational modifications, such as phosphorylation, acetylation, methylation, ubiquitination and SUMOylation, have recently emerged as a strategy for the fine-tuned regulation of NF-κB. Our review discusses recent progress in the understanding of RelB regulation by post-translational modifications and the associated functions in normal and pathological conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...