Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 15(3)2023 03 08.
Article in English | MEDLINE | ID: mdl-36992415

ABSTRACT

COVID-19 has been considered a vascular disease, and inflammation, intravascular coagulation, and consequent thrombosis may be associated with endothelial dysfunction. These changes, in addition to hypoxia, may be responsible for pathological angiogenesis. This research investigated the impact of COVID-19 on vascular function by analyzing post-mortem lung samples from 24 COVID-19 patients, 10 H1N1pdm09 patients, and 11 controls. We evaluated, through the immunohistochemistry technique, the tissue immunoexpressions of biomarkers involved in endothelial dysfunction, microthrombosis, and angiogenesis (ICAM-1, ANGPT-2, and IL-6, IL-1ß, vWF, PAI-1, CTNNB-1, GJA-1, VEGF, VEGFR-1, NF-kB, TNF-α and HIF-1α), along with the histopathological presence of microthrombosis, endothelial activation, and vascular layer hypertrophy. Clinical data from patients were also observed. The results showed that COVID-19 was associated with increased immunoexpression of biomarkers involved in endothelial dysfunction, microthrombosis, and angiogenesis compared to the H1N1 and CONTROL groups. Microthrombosis and vascular layer hypertrophy were found to be more prevalent in COVID-19 patients. This study concluded that immunothrombosis and angiogenesis might play a key role in COVID-19 progression and outcome, particularly in patients who die from the disease.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Thrombosis , Vascular Diseases , Humans , Lung/metabolism , Hypoxia/metabolism , Hypertrophy
2.
Int J Mol Sci ; 23(1)2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35008594

ABSTRACT

Acute respiratory distress syndrome (ARDS) followed by repair with lung remodeling is observed in COVID-19. These findings can lead to pulmonary terminal fibrosis, a form of irreversible sequelae. There is evidence that TGF-ß is intimately involved in the fibrogenic process. When activated, TGF-ß promotes the differentiation of fibroblasts into myofibroblasts and regulates the remodeling of the extracellular matrix (ECM). In this sense, the present study evaluated the histopathological features and immunohistochemical biomarkers (ACE-2, AKT-1, Caveolin-1, CD44v6, IL-4, MMP-9, α-SMA, Sphingosine-1, and TGF-ß1 tissue expression) involved in the TGF-ß1 signaling pathways and pulmonary fibrosis. The study consisted of 24 paraffin lung samples from patients who died of COVID-19 (COVID-19 group), compared to 10 lung samples from patients who died of H1N1pdm09 (H1N1 group) and 11 lung samples from patients who died of different causes, with no lung injury (CONTROL group). In addition to the presence of alveolar septal fibrosis, diffuse alveolar damage (DAD) was found to be significantly increased in the COVID-19 group, associated with a higher density of Collagen I (mature) and III (immature). There was also a significant increase observed in the immunoexpression of tissue biomarkers ACE-2, AKT-1, CD44v6, IL-4, MMP-9, α-SMA, Sphingosine-1, and TGF-ß1 in the COVID-19 group. A significantly lower expression of Caveolin-1 was also found in this group. The results suggest the participation of TGF-ß pathways in the development process of pulmonary fibrosis. Thus, it would be plausible to consider therapy with TGF-ß inhibitors in those patients recovered from COVID-19 to mitigate a possible development of pulmonary fibrosis and its consequences for post-COVID-19 life quality.


Subject(s)
COVID-19/metabolism , Pulmonary Fibrosis/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Actins/metabolism , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/pathology , Caveolin 1/metabolism , Collagen Type I/metabolism , Collagen Type III/metabolism , Female , Humans , Hyaluronan Receptors/metabolism , Immunohistochemistry , Influenza A Virus, H1N1 Subtype/metabolism , Influenza, Human/metabolism , Influenza, Human/pathology , Interleukin-4/metabolism , Male , Matrix Metalloproteinase 9/metabolism , Middle Aged , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Fibrosis/complications , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Retrospective Studies , Transforming Growth Factor beta1/metabolism , COVID-19 Drug Treatment
3.
Cytokine ; 131: 155118, 2020 07.
Article in English | MEDLINE | ID: mdl-32403004

ABSTRACT

Bronchopulmonary dysplasia (BPD) is an abnormality that occurs in premature neonate lung development. The pathophysiology is uncertain, but the inflammatory response to lung injury may be the responsible pathway. The objective of this study is to evaluate the role of interleukins 6, 8, 10, and 17 through the anatomopathological and immunohistochemical study of the lungs of premature neonates with BPD. Thirty-two cases of neonatal autopsies from the Pathology Department of the Clinics Hospital of the Universidade Federal do Paraná, who presented between 1991 and 2005 were selected. The sample included neonates less than 34 weeks of gestational age who underwent oxygen therapy and had pulmonary formalin-fixed paraffin-embedded (FFPE) samples. Pulmonary specimens were later classified into three groups according to histopathological and morphometric changes (classic BPD, new BPD, and without BPD) and subjected to immunohistochemical analysis. The antibodies selected for the study were anti-IL-6, anti-IL-8, anti-IL-10, and anti-IL-17A monoclonal antibodies. IL-6, IL-8, and IL-10 showed no significant differences in tissue expression among the groups. IL-17A had higher tissue immunoreactivity in the group without BPD compared with the classic BPD group (1686 vs. 866 µm2, p = 0.029). This study showed that the involvement of interleukins 6, 8, and 10 might not be significantly different between the two types of BPD. We speculated that IL-17A could be a protective factor in this disease.


Subject(s)
Bronchopulmonary Dysplasia/immunology , Interleukin-17/metabolism , Interleukins/metabolism , Lung/immunology , Bronchopulmonary Dysplasia/pathology , Female , Humans , Infant, Newborn , Infant, Premature , Interleukin-10/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...