Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccines (Basel) ; 11(11)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38006035

ABSTRACT

The placental transfer of antibodies that mediate bacterial clearance via phagocytes is likely important for protection against invasive group B Streptococcus (GBS) disease. A robust functional assay is essential to determine the immune correlates of protection and assist vaccine development. Using standard reagents, we developed and optimized an opsonophagocytic killing assay (OPKA) where dilutions of test sera were incubated with bacteria, baby rabbit complement (BRC) and differentiated HL60 cells (dHL60) for 30 min. Following overnight incubation, the surviving bacteria were enumerated and the % bacterial survival was calculated relative to serum-negative controls. A reciprocal 50% killing titer was then assigned. The minimal concentrations of anti-capsular polysaccharide (CPS) IgG required for 50% killing were 1.65-3.70 ng/mL (depending on serotype). Inhibition of killing was observed using sera absorbed with homologous CPS but not heterologous CPS, indicating specificity for anti-CPS IgG. The assay performance was examined in an interlaboratory study using residual sera from CPS-conjugate vaccine trials with international partners in the Group B Streptococcus Assay STandardisatiON (GASTON) Consortium. Strong correlations of reported titers between laboratories were observed: ST-Ia r = 0.88, ST-Ib r = 0.91, ST-II r = 0.91, ST-III r = 0.90 and ST-V r = 0.94. The OPKA is an easily transferable assay with accessible standard reagents and will be a valuable tool to assess GBS-specific antibodies in natural immunity and vaccine studies.

2.
J Proteome Res ; 21(8): 1997-2010, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35849550

ABSTRACT

Fasciola hepatica, the common liver fluke and causative agent of zoonotic fasciolosis, impacts on food security with global economic losses of over $3.2 BN per annum through deterioration of animal health, productivity losses, and livestock death and is also re-emerging as a foodborne human disease. Cathepsin proteases present a major vaccine and diagnostic target of the F. hepatica excretory/secretory (ES) proteome, but utilization in diagnostics of the highly antigenic zymogen stage of these proteins is surprisingly yet to be fully exploited. Following an immuno-proteomic investigation of recombinant and native procathepsins ((r)FhpCL1), including mass spectrometric analyses (DOI: 10.6019/PXD030293), and using counterpart polyclonal antibodies to a recombinant mutant procathepsin L (anti-rFhΔpCL1), we have confirmed recombinant and native cathepsin L zymogens contain conserved, highly antigenic epitopes that are conformationally dependent. Furthermore, using diagnostic platforms, including pilot serum and fecal antigen capture enzyme-linked immunosorbent assay (ELISA) tests, the diagnostic capacities of cathepsin L zymogens were assessed and validated, offering promising efficacy as markers of infection and for monitoring treatment efficacy.


Subject(s)
Fasciola hepatica , Fascioliasis , Animals , Cathepsin L/genetics , Cathepsin L/metabolism , Enzyme Precursors , Enzyme-Linked Immunosorbent Assay/methods , Epitopes , Fasciola hepatica/chemistry , Fasciola hepatica/genetics , Fascioliasis/diagnosis , Humans
3.
Molecules ; 25(15)2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32751696

ABSTRACT

Fasciola hepatica, the causative agent of fasciolosis, is a global threat to public health, animal welfare, agricultural productivity, and food security. In the ongoing absence of a commercial vaccine, independent emergences of anthelmintic-resistant parasite populations worldwide are threatening the sustainability of the few flukicides presently available, and particularly triclabendazole (TCBZ) as the drug of choice. Consequently, prognoses for future fasciolosis control and sustained TCBZ application necessitate improvements in diagnostic tools to identify anthelmintic efficacy. Previously, we have shown that proteomic fingerprinting of F. hepatica excretory/secretory (ES) products offered new biomarkers associated with in vitro TCBZ-sulfoxide (SO) recovery or death. In the current paper, two of these biomarkers (calreticulin (CRT) and triose phosphate isomerase (TPI)) were recombinantly expressed and evaluated to measure TCBZ efficacy via a novel approach to decipher fluke molecular phenotypes independently of molecular parasite resistance mechanism(s), which are still not fully characterised or understood. Our findings confirmed the immunoreactivity and diagnostic potential of the present target antigens by sera from TCBZ-susceptible (TCBZ-S) and TCBZ-resistant (TCBZ-R) F. hepatica experimentally infected sheep.


Subject(s)
Antiplatyhelmintic Agents/pharmacology , Biomarkers/metabolism , Calreticulin/metabolism , Fasciola hepatica/metabolism , Fascioliasis/metabolism , Triclabendazole/pharmacology , Triose-Phosphate Isomerase/metabolism , Animals , Calreticulin/genetics , Drug Resistance , Fasciola hepatica/drug effects , Fascioliasis/drug therapy , Fascioliasis/parasitology , Fascioliasis/veterinary , Helminth Proteins/genetics , Helminth Proteins/metabolism , Pilot Projects , Proteome/analysis , Sheep , Sheep Diseases/drug therapy , Sheep Diseases/metabolism , Sheep Diseases/parasitology , Triose-Phosphate Isomerase/genetics
4.
Article in English | MEDLINE | ID: mdl-31160283

ABSTRACT

The arsenal of drugs used to treat leishmaniasis, caused by Leishmania spp., is limited and beset by toxicity and emergent resistance. Furthermore, our understanding of drug mode of action and potential routes to resistance is limited. Forward genetic approaches have revolutionized our understanding of drug mode of action in the related kinetoplastid parasite Trypanosoma brucei Therefore, we screened our genome-scale T. brucei RNA interference (RNAi) library against the current antileishmanial drugs sodium stibogluconate (antimonial), paromomycin, miltefosine, and amphotericin B. Identification of T. brucei orthologues of the known Leishmania antimonial and miltefosine plasma membrane transporters effectively validated our approach, while a cohort of 42 novel drug efficacy determinants provides new insights and serves as a resource. Follow-up analyses revealed the antimonial selectivity of the aquaglyceroporin TbAQP3. A lysosomal major facilitator superfamily transporter contributes to paromomycin-aminoglycoside efficacy. The vesicle-associated membrane protein TbVAMP7B and a flippase contribute to amphotericin B and miltefosine action and are potential cross-resistance determinants. Finally, multiple phospholipid-transporting flippases, including the T. brucei orthologue of the Leishmania miltefosine transporter, a putative ß-subunit/CDC50 cofactor, and additional membrane-associated hits, affect amphotericin B efficacy, providing new insights into mechanisms of drug uptake and action. The findings from this orthology-based chemogenomic profiling approach substantially advance our understanding of antileishmanial drug action and potential resistance mechanisms and should facilitate the development of improved therapies as well as surveillance for drug-resistant parasites.


Subject(s)
Antiprotozoal Agents/pharmacology , Trypanosoma brucei brucei/metabolism , Adenosine Triphosphatases/metabolism , Amphotericin B/pharmacology , Antimony Sodium Gluconate/pharmacology , Leishmania/parasitology , Paromomycin/pharmacology , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/pharmacology , R-SNARE Proteins/metabolism , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...