Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Drug Metab Dispos ; 42(4): 707-17, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24423753

ABSTRACT

The mammalian target of rapamycin (mTOR) is a protein kinase that shows key involvement in age-related disease and promises to be a target for treatment of cancer. In the present study, the elimination of potent ATP-competitive mTOR inhibitor 3-(6-amino-2-methylpyrimidin-4-yl)-N-(1H-pyrazol-3-yl)imidazo[1,2-b]pyridazin-2-amine (compound 1) is studied in bile duct-cannulated rats, and the metabolism of compound 1 in liver microsomes is compared across species. Compound 1 was shown to undergo extensive N-glucuronidation in bile duct-catheterized rats. N-glucuronides were detected on positions N1 (M2) and N2 (M1) of the pyrazole moiety as well as on the primary amine (M3). All three N-glucuronide metabolites were detected in liver microsomes of the rat, dog, and human, while primary amine glucuronidation was not detected in cynomolgus monkey. In addition, N1- and N2-glucuronidation showed strong species selectivity in vitro, with rat, dog, and human favoring N2-glucuronidation and monkey favoring N1-glucuronide formation. Formation of M1 in monkey liver microsomes also followed sigmoidal kinetics, singling out monkey as unique among the species with regard to compound 1 N-glucuronidation. In this respect, monkeys might not always be the best animal model for N-glucuronidation of uridine diphosphate glucuronosyltransferase (UGT) 1A9 or UGT1A1 substrates in humans. The impact of N-glucuronidation of compound 1 could be more pronounced in higher species such as monkey and human, leading to high clearance in these species. While compound 1 shows promise as a candidate for investigating the impact of pan-mTOR inhibition in vivo, opportunities may exist through medicinal chemistry efforts to reduce metabolic liability with the goal of improving systemic exposure.


Subject(s)
Glucuronides/metabolism , Heterocyclic Compounds, 2-Ring/metabolism , Microsomes, Liver/enzymology , Pyrimidines/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , Animals , Biotransformation , Chromatography, High Pressure Liquid , Dogs , Female , Heterocyclic Compounds, 2-Ring/pharmacology , Humans , Kinetics , Macaca fascicularis , Magnetic Resonance Spectroscopy , Male , Microsomes, Liver/drug effects , Pyrimidines/pharmacology , Rats , Rats, Sprague-Dawley , Species Specificity , Tandem Mass Spectrometry
2.
J Pharmacol Exp Ther ; 343(2): 316-24, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22869929

ABSTRACT

This study was designed to characterize breast cancer resistance protein (Bcrp) knockout Abcg2(-/-) rats and assess the effect of ATP-binding cassette subfamily G member 2 (Abcg2) deletion on the excretion and pharmacokinetic properties of probe substrates. Deletion of the target gene in the Abcg2(-/-) rats was confirmed, whereas gene expression was unaffected for most of the other transporters and metabolizing enzymes. Biliary excretion of nitrofurantoin, sulfasalazine, and compound A [2-(5-methoxy-2-((2-methyl-1,3-benzothiazol-6-yl)amino)-4-pyridinyl)-1,5,6,7-tetrahydro-4H-pyrrolo[3,2-c]pyridin-4-one] accounted for 1.5, 48, and 48% of the dose in the Abcg2(+/+) rats, respectively, whereas it was decreased by 70 to 90% in the Abcg2(-/-) rats. Urinary excretion of nitrofurantoin, a significant elimination pathway, was unaffected in the Abcg2(-/-) rats, whereas renal clearance of sulfasalazine, a minor elimination pathway, was reduced by >90%. Urinary excretion of compound A was minimal. Systemic clearance in the Abcg2(-/-) rats decreased 22, 43 (p<0.05), and 57%, respectively, for nitrofurantoin, sulfasalazine, and compound A administered at 1 mg/kg and 27% for compound A administered at 5 mg/kg. Oral absorption of nitrofurantoin, a compound with high aqueous solubility and good permeability, was not limited by Bcrp. In contrast, the absence of Bcrp led to a 33- and 11-fold increase in oral exposure of sulfasalazine and compound A, respectively. These data show that Bcrp plays a crucial role in biliary excretion of these probe substrates and has differential effects on systemic clearance and oral absorption in rats depending on clearance mechanisms and compound properties. The Abcg2(-/-) rat is a useful model for understanding the role of Bcrp in elimination and oral absorption.


Subject(s)
ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/physiology , Pharmacokinetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Algorithms , Animals , Bile/metabolism , Bile Ducts/physiology , Biological Transport, Active/genetics , Biological Transport, Active/physiology , Cell Line , Chromatography, High Pressure Liquid , Digoxin/pharmacokinetics , Female , Gene Deletion , Gene Expression/drug effects , Injections, Intravenous , Male , Mass Spectrometry , Nitrofurantoin/pharmacokinetics , Pregnancy , RNA/biosynthesis , RNA/genetics , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Sulfasalazine/pharmacokinetics
3.
Bioorg Med Chem Lett ; 22(15): 4967-74, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22765895

ABSTRACT

mTOR is a critical regulator of cellular signaling downstream of multiple growth factors. The mTOR/PI3K/AKT pathway is frequently mutated in human cancers and is thus an important oncology target. Herein we report the evolution of our program to discover ATP-competitive mTOR inhibitors that demonstrate improved pharmacokinetic properties and selectivity compared to our previous leads. Through targeted SAR and structure-guided design, new imidazopyridine and imidazopyridazine scaffolds were identified that demonstrated superior inhibition of mTOR in cellular assays, selectivity over the closely related PIKK family and improved in vivo clearance over our previously reported benzimidazole series.


Subject(s)
Protein Kinase Inhibitors/chemistry , Pyridazines/chemistry , Pyridines/chemistry , TOR Serine-Threonine Kinases/antagonists & inhibitors , Animals , Benzimidazoles/chemistry , Binding Sites , Binding, Competitive , Crystallography, X-Ray , Drug Design , Drug Evaluation, Preclinical , Half-Life , Humans , Imidazoles/chemistry , Male , Mice , Microsomes, Liver/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Protein Structure, Tertiary , Pyridazines/chemical synthesis , Pyridazines/pharmacokinetics , Pyridines/chemical synthesis , Pyridines/pharmacokinetics , Rats, Sprague-Dawley , Signal Transduction/drug effects , Structure-Activity Relationship , TOR Serine-Threonine Kinases/metabolism
4.
Bioorg Med Chem Lett ; 21(7): 2064-70, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21376583

ABSTRACT

mTOR is part of the PI3K/AKT pathway and is a central regulator of cell growth and survival. Since many cancers display mutations linked to the mTOR signaling pathway, mTOR has emerged as an important target for oncology therapy. Herein, we report the discovery of triazine benzimidazole inhibitors that inhibit mTOR kinase activity with up to 200-fold selectivity over the structurally homologous kinase PI3Kα. When tested in a panel of cancer cell lines displaying various mutations, a selective inhibitor from this series inhibited cellular proliferation with a mean IC(50) of 0.41 µM. Lead compound 42 demonstrated up to 83% inhibition of mTOR substrate phosphorylation in a murine pharmacodynamic model.


Subject(s)
Benzimidazoles/pharmacology , Drug Discovery , TOR Serine-Threonine Kinases/antagonists & inhibitors , Triazines/pharmacology , Benzimidazoles/chemistry , Cell Line, Tumor , Crystallography, X-Ray , Humans , Hydrogen Bonding , Inhibitory Concentration 50 , Models, Molecular , Structure-Activity Relationship , Triazines/chemistry
5.
J Pharm Sci ; 100(7): 2734-43, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21287556

ABSTRACT

Intrinsic dissolution, powder dissolution, and the pharmacokinetics (PK) of 12 carboxylic acid co-crystals of AMG 517 were determined and compared. Dissolution studies were performed in fasted simulated intestinal fluid (FaSIF). A control dissolution experiment was conducted with the free base in FaSIF plus sorbic acid to compare with the AMG 517 sorbic acid co-crystal (SRA). Suspension formulations in 1% polyvinylpyrrolidone K25 in water were administered orally at 100 mg/kg to rats. All co-crystals were found to have faster intrinsic and powder dissolution rates in FaSIF as well as higher area under the concentration-time curves (AUC) in rat PK investigations compared with the free base. The control dissolution experiment indicates that the increase in dissolution rate of SRA over the free base is not due to the presence of sorbic acid in the dissolution medium. Linear correlation of dissolution rate and AUC among the 12 co-crystals was moderate, indicating that in vitro dissolution is a valuable method to predict whether a co-crystal will improve the exposure of a poorly soluble pharmaceutical ingredient; however, in vivo testing may be required to determine the extent.


Subject(s)
Benzothiazoles/pharmacokinetics , Carboxylic Acids/pharmacokinetics , Pyrimidines/pharmacokinetics , Administration, Oral , Animals , Area Under Curve , Benzothiazoles/administration & dosage , Benzothiazoles/chemistry , Carboxylic Acids/administration & dosage , Carboxylic Acids/chemistry , Chemistry, Pharmaceutical , Crystallization , Drug Compounding , Male , Povidone/chemistry , Powders , Pyrimidines/administration & dosage , Pyrimidines/chemistry , Rats , Rats, Sprague-Dawley , Solubility , Technology, Pharmaceutical/methods
6.
Chem Res Toxicol ; 23(12): 1947-53, 2010 Dec 20.
Article in English | MEDLINE | ID: mdl-21053927

ABSTRACT

High-resolution accurate MS with an LTQ-Orbitrap was used to identify quinone imine metabolites derived from the 5-hydroxy (5-OH) and 4 prime-hydroxy (4'-OH) glutathione conjugates of diclofenac in rat bile. The initial quinone imine metabolites formed by oxidation of diclofenac have been postulated to be reactive intermediates potentially involved in diclofenac-mediated hepatotoxicity; while these metabolites could be formed using in vitro systems, they have never been detected in vivo. This report describes the identification of secondary quinone imine metabolites derived from 5-OH and 4'-OH diclofenac glutathione conjugates in rat bile. To verify the proposed structures, the diclofenac quinone imine GSH conjugate standards were prepared synthetically and enzymatically. The novel metabolite peaks displayed the identical retention times, accurate mass MS/MS spectra, and the fragmentation patterns as the corresponding authentic standards. The formation of these secondary quinone metabolites occurs only under conditions where bile salt homeostasis was experimentally altered. Standard practice in biliary excretion experiments using bile duct-cannulated rats includes infusion of taurocholic acid and/or other bile acids to replace those lost due to continuous collection of bile; for this experiment, the rats received no replacement bile acid infusion. High-resolution accurate mass spectrometry data and comparison with chemically and enzymatically prepared quinone imines of diclofenac glutathione conjugates support the identification of these metabolites. A mechanism for the formation of these reactive quinone imine containing glutathione conjugates of diclofenac is proposed.


Subject(s)
Bile/chemistry , Diclofenac/analogs & derivatives , Diclofenac/chemistry , Glutathione/chemistry , Imines/chemistry , Quinones/chemistry , Animals , Chromatography, High Pressure Liquid/standards , Diclofenac/chemical synthesis , Diclofenac/metabolism , Male , Oxidation-Reduction , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry/standards
7.
Chem Res Toxicol ; 23(11): 1743-52, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20825217

ABSTRACT

Compound 1, (7-methoxy-N-((6-(3-methylisothiazol-5-yl)-[1,2,4]triazolo[4,3-b]pyridazin-3-yl)methyl)-1,5-naphthyridin-4-amine) is a potent, selective inhibitor of c-Met (mesenchymal-epithelial transition factor), a receptor tyrosine kinase that is often deregulated in cancer. Compound 1 displayed desirable pharmacokinetic properties in multiple preclinical species. Glutathione trapping studies in liver microsomes resulted in the NADPH-dependent formation of a glutathione conjugate. Compound 1 also exhibited very high in vitro NADPH-dependent covalent binding to microsomal proteins. Species differences in covalent binding were observed, with the highest binding in rats, mice, and monkeys (1100-1300 pmol/mg/h), followed by dogs (400 pmol/mg/h) and humans (144 pmol/mg/h). This covalent binding to protein was abolished by coincubation with glutathione. Together, these in vitro data suggest that covalent binding and glutathione conjugation proceed via bioactivation to a chemically reactive intermediate. The cytochrome (CYP) P450 enzymes responsible for this bioactivation were identified as cytochrome P450 3A4, 1A2, and 2D6 in human and cytochrome P450 2A2, 3A1, and 3A2 in rats. The glutathione metabolite was detected in the bile of rats and mice, thus demonstrating bioactivation occurring in vivo. Efforts to elucidate the structure of the glutathione adduct led to the isolation and characterization of the metabolite by NMR and mass spectrometry. The analytical data confirmed conclusively that the glutathione conjugation was on the 4-C position of the isothiazole ring. Such P450-mediated bioactivation of an isothiazole or thiazole group has not been previously reported. We propose a mechanism of bioactivation via sulfur oxidation followed by glutathione attack at the 4-position with subsequent loss of water resulting in the formation of the glutathione conjugate. Efforts to reduce bioactivation without compromising potency and pharmacokinetics were undertaken in order to minimize the potential risk of toxicity. Because of the exemplary pharmacokinetic/pharmacodynamic (PK/PD) properties of the isothiazole group, initial attempts were focused on introducing alternative metabolic soft spots into the molecule. These efforts resulted in the discovery of 7-(2-methoxyethoxy)-N-((6-(3-methyl-5-isothiazolyl)[1,2,4]triazolo[4,3-b]pyridazin-3-yl)methyl)-1,5-naphthyridin-4-amine (compound 2), with the major metabolic transformation occurring on the naphthyridine ring alkoxy substituent. However, a glutathione conjugate of compound 2 was produced in vitro and in vivo in a manner similar to that observed for compound 1. Furthermore, the covalent binding was high across species (360, 300, 529, 208, and 98 pmol/mg/h in rats, mice, dogs, monkeys, and humans, respectively), but coincubation with glutathione reduced the extent of covalent binding. The second viable alternative in reducing bioactivation involved replacing the isothiazole ring with bioisosteric heterocycles. Replacement of the isothiazole ring with an isoxazole or a pyrazole reduced the bioactivation while retaining the desirable PK/PD characteristics of compounds 1 and 2.


Subject(s)
Naphthyridines/metabolism , Pyridazines/metabolism , Thiazoles/metabolism , Animals , Chromatography, High Pressure Liquid , Cytochrome P-450 Enzyme System/metabolism , Dogs , Drug Evaluation, Preclinical , Glutathione/chemistry , Humans , Magnetic Resonance Spectroscopy , Mice , Microsomes, Liver/metabolism , Molecular Conformation , Naphthyridines/chemistry , Naphthyridines/pharmacokinetics , Naphthyridines/toxicity , Protein Binding , Pyridazines/chemistry , Pyridazines/pharmacokinetics , Pyridazines/toxicity , Rats , Risk Factors , Spectrometry, Mass, Electrospray Ionization , Thiazoles/chemistry , Thiazoles/toxicity
8.
J Pharm Sci ; 99(9): 3769-78, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20665842

ABSTRACT

The dissolution and pharmacokinetics (PK) of two carboxylic acid co-crystals (cinnamic acid and benzoic acid) with the corresponding amide co-crystals (cinnamamide and benzamide) of AMG 517 were investigated. Powder and intrinsic dissolution studies were performed in fasted simulated intestinal fluid (FaSIF). Suspension formulations in 1% polyvinylpyrrolidone K25 in water were administered orally at 100 mg/kg to rats. The four co-crystals were found to have faster intrinsic and powder dissolution rates in FaSIF than the free base. This correlated with a 2.4- to 7.1-fold increase in the area under the concentration-time curve in rat PK investigations. When contrasting the acid to its corresponding amide co-crystal, cinnamamide shows improvement over cinnamic acid, while benzamide and benzoic acid perform similarly.


Subject(s)
Benzothiazoles/chemistry , Benzothiazoles/pharmacokinetics , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , TRPV Cation Channels/antagonists & inhibitors , Animals , Benzamides/chemistry , Benzoic Acid/chemistry , Cinnamates/chemistry , Crystallization , Crystallography, X-Ray , Male , Rats , Rats, Sprague-Dawley , Solubility
9.
Drug Metab Dispos ; 38(2): 223-31, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19875499

ABSTRACT

In vitro intrinsic metabolic clearance (CL(int)) is used routinely for compound selection in drug discovery; however, in vitro CL(int) often underpredicts in vivo clearance (CL). Forty-one proprietary compounds and 16 marketed drugs were selected to determine whether permeability and efflux status could influence the predictability of CL from in vitro CL(int) obtained from liver microsomal and hepatocyte incubations. For many of the proprietary compounds examined, rat CL was significantly underpredicted using the well stirred model incorporating both fraction of unbound drug in blood and fraction of unbound drug in the microsomal or hepatocyte incubation. Further analysis revealed that the accuracy of the prediction was differentiated by permeability and P-glycoprotein- (P-gp) and mouse breast cancer resistance protein (mBcrp)-mediated efflux. For proprietary compounds with passive permeability greater than 5 x 10(-6) cm/s and efflux ratios less than 5 in both P-gp- and mBcrp-expressing cells, CL(int) provided reasonable prediction. The average -fold error (AFE) was 1.8 for rat liver microsomes (RLMs) and 2.3 for rat hepatocytes. In contrast, CL was dramatically underpredicted for compounds with passive permeability less than 5 x 10(-6) cm/s; AFEs of 54.4 and 29.2 were observed for RLM and rat hepatocytes, respectively. In vivo CL was also underpredicted for compounds that were good efflux substrates (permeability >5 x 10(-6) cm/s). The AFEs were 7.4 and 8.1 for RLM and rat hepatocytes, respectively. A similar relationship between permeability, efflux status, and human CL prediction reported in the literature was observed for 16 marketed drugs. These data show that permeability and efflux status are determinants for the predictability of CL from in vitro metabolic CL(int).


Subject(s)
Cell Membrane Permeability , Metabolic Clearance Rate , Pharmaceutical Preparations/metabolism , Pharmacokinetics , ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2 , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Algorithms , Animals , Biological Transport , Cell Line , Chemical Phenomena , Dogs , Genes, MDR , Hepatocytes/metabolism , Humans , Male , Mice , Microsomes, Liver/metabolism , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/classification , Rats , Rats, Sprague-Dawley , Sus scrofa
10.
Chem Res Toxicol ; 21(11): 2216-22, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18837519

ABSTRACT

AMG 458 {1-(2-hydroxy-2-methylpropyl)-N-[5-(7-methoxyquinolin-4-yloxy)pyridin-2-yl]-5-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carboxamide} is a potent, selective inhibitor of c-Met, a receptor tyrosine kinase that is often deregulated in cancer. AMG 458 was observed to bind covalently to liver microsomal proteins from rats and humans in the absence of NADPH. When [(14)C]AMG 458 was incubated with liver microsomes in the presence of glutathione and N-acetyl cysteine, thioether adducts were detected by radiochromatography and LC/MS/MS analysis. These adducts were also formed upon incubation of AMG 458 with glutathione and N-acetyl cysteine in buffers at pH 7.4. In vivo, the thioether adducts were detected in bile and urine of bile duct-cannulated rats dosed with [(14)C]AMG 458. The two adducts were isolated, and their structures were determined by MS/MS and NMR analysis. The identified structures resulted from a thiol displacement reaction to yield a quinoline thioether structure and the corresponding hydroxyaryl moiety. The insights gained from elucidating the mechanism of adduct formation led to the design of AMG 458 analogues that exhibited eliminated or reduced glutathione adduct formation in vitro and in vivo.


Subject(s)
Aminopyridines/metabolism , Glutathione/metabolism , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Pyrazoles/metabolism , Quinolines/metabolism , Aminopyridines/chemistry , Animals , Glutathione/chemistry , Humans , Magnetic Resonance Spectroscopy , Male , Microsomes, Liver/metabolism , Protein Binding , Pyrazoles/chemistry , Quinolines/chemistry , Rats , Rats, Sprague-Dawley
11.
Drug Metab Lett ; 2(1): 35-40, 2008 Jan.
Article in English | MEDLINE | ID: mdl-19356068

ABSTRACT

High resolution accurate MS with an LTQ-Orbitrap identified two novel metabolites of diclofenac in rat bile and rat and human hepatocyte incubations: a benzyl-S-glutathione conjugate and 2-(2,6-dichlorophenylamino) benzoic acid. A mechanism for the bioactivation of diclofenac involving decarboxylation is proposed.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Diclofenac/pharmacokinetics , Mass Spectrometry/methods , Animals , Chromatography, Liquid/methods , Decarboxylation , Diclofenac/analogs & derivatives , Diclofenac/metabolism , Glutathione/metabolism , Hepatocytes/metabolism , Humans , Male , Microsomes, Liver/metabolism , Rats , Rats, Sprague-Dawley
12.
Rapid Commun Mass Spectrom ; 19(9): 1125-9, 2005.
Article in English | MEDLINE | ID: mdl-15799073

ABSTRACT

MK-0767, (+/-)-5-[(2,4-dioxothiazolidin-5-yl)methyl]-2-methoxy-N-[[(4-trifluoromethyl)phenyl]methyl]benzamide, is a thiazolidinedione-containing dual peroxisome proliferator-activated receptor (PPAR) alpha/gamma agonist that has been studied as a potential treatment for patients with type 2 diabetes. MK-0767 contains a chiral center at the C-5 position of the thiazolidinedione ring and was being developed as the racemate, due to the rapid interconversion of its enantiomers in biological samples. In the present work the in vitro and in vivo concentration ratios of the (+)-(R) to (-)-(S) enantiomers of MK-0767 were determined in plasma from humans (in vitro only) and nonclinical species used in the toxicological evaluation of rac-MK-0767, namely CD-1 mice, Sprague-Dawley rats, beagle dogs, New Zealand white rabbits, and rhesus monkeys. The R/S ratio was determined by chiral liquid chromatography/tandem mass spectrometry. Species differences were observed in the in vitro and in vivo enantiomeric ratios, as well as differences between in vitro and in vivo in some species. The in vitro R/S ratio was similar in dogs and humans (approximately 1.5-1.7). In rats and monkeys, the ratio was approximately unity, both in vitro and in vivo. In mice, the ratio was higher in vitro (approximately 1) than in vivo (approximately 0.6), while in rabbits it was higher in vivo (approximately 1) than in vitro (approximately 0.5). These results suggested that differential binding of the MK-0767 enantiomers to plasma and tissue proteins and other macromolecules may be affecting the R/S ratio both in vitro and in vivo, since in protein-free systems MK-0767 exists as the racemate.


Subject(s)
Thiazoles/blood , Thiazoles/chemistry , Animals , Dogs , Haplorhini/blood , Humans , Mice , Molecular Structure , Rabbits , Rats , Species Specificity , Stereoisomerism
13.
Bioorg Med Chem Lett ; 14(9): 2323-6, 2004 May 03.
Article in English | MEDLINE | ID: mdl-15081033

ABSTRACT

VLA-4 (alpha(4)beta(1), very late activating antigen-4), a key cell surface integrin plays an important role in inflammation by promoting leukocyte attachment and extravasation from the vasculature into the peripheral tissues. As such, VLA-4 antagonists may be useful in the treatment, prevention, and suppression of diseases where cell adhesion and migration are important such as asthma, rheumatoid arthritis, and multiple sclerosis. Herein, we report on the discovery, synthesis, and biological evaluation of amidines as small molecule antagonists of VLA-4.


Subject(s)
Amides/chemistry , Amidines/chemistry , Integrin alpha4beta1/antagonists & inhibitors , Area Under Curve
15.
Drug Metab Dispos ; 30(7): 771-7, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12065435

ABSTRACT

The pharmacokinetics and oral bioavailability of (R)-N-[4-[2-[[2-hydroxy-2-(pyridin-3-yl)ethyl]amino]ethyl]phenyl]-4-[4-[4-(trifluoromethylphenyl]thiazol-2-yl]benzenesulfonamide (1), a 3-pyridyl thiazole benzenesulfonamide beta3-adrenergic receptor agonist, were investigated in rats, dogs, and monkeys. Systemic clearance was higher in rats (approximately 30 ml/min/kg) than in dogs and monkeys (both approximately 10 ml/min/kg), and oral bioavailability was 17, 27, and 4%, respectively. Since systemic clearance was 25 to 40% of hepatic blood flow in these species, hepatic extraction was expected to be low, and it was likely that oral bioavailability was limited either by absorption or a large first-pass effect in the gut. The absorption and excretion of 3H-labeled 1 were investigated in rats, and only 28% of the administered radioactivity was orally absorbed. Subsequently, the hepatic extraction of 1 was evaluated in rats (30%) and monkeys (47%). The low oral bioavailability in rats could be explained completely by poor oral absorption and hepatic first-pass metabolism; in monkeys, oral absorption was either less than in rats or first-pass extraction in the gut was greater. In an attempt to increase oral exposure, the pharmacokinetics and oral bioavailability of two potential prodrugs of 1, an N-ethyl [(R)-N-[4-[2-[ethyl[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]phenyl]-4-[4-[4-(trifluoromethyl)phenyl]thiazol-2-yl]benzenesulfonamide; 2] and a morpholine derivative [(R)-N-[4-[2-[2-(3-pyridinyl)morpholin-4-yl]ethyl]phenyl]-4-[4-[4-(trifluoromethyl)- phenyl]thiazol-2-yl]benzenesulfonamide; 3], were evaluated in monkeys. Conversion to 1 was low (<3%) with both derivatives, and neither entity was an effective prodrug, but the oral bioavailability of 3 (56%) compared with 1 (4%) was significantly improved. The hypothesis that the increased oral bioavailability of 3 was due to a reduction in hydrogen bonding sites in the molecule led to the design of (R)-N-[4-[2-[[2-hydroxy-2-(pyridin-2-yl)ethyl]amino]ethyl]phenyl]-4-[4-(4-trifluoromethylphenyl)thiazol-2-yl]benzenesulfonamide (4), a 2-pyridyl beta3-adrenergic receptor agonist with improved oral bioavailability in rats and monkeys.


Subject(s)
Adrenergic beta-3 Receptor Agonists , Adrenergic beta-Agonists/pharmacokinetics , Sulfonamides/pharmacokinetics , Thiazoles/pharmacokinetics , Administration, Oral , Adrenergic beta-Agonists/chemistry , Adrenergic beta-Agonists/metabolism , Animals , Biological Availability , Dogs , Drug Evaluation, Preclinical , Macaca mulatta , Male , Rats , Rats, Sprague-Dawley , Receptors, Adrenergic, beta-3/physiology , Sulfonamides/chemistry , Sulfonamides/metabolism , Thiazoles/chemistry , Thiazoles/metabolism , Benzenesulfonamides
16.
17.
Bioorg Med Chem Lett ; 12(4): 637-40, 2002 Feb 25.
Article in English | MEDLINE | ID: mdl-11844689

ABSTRACT

A series of substituted N-(3,5-dichlorobenzenesulfonyl)-L-prolyl- and alpha-methyl-L-prolyl-phenylalanine derivatives was prepared as VLA-4/VCAM antagonists. The compounds showed excellent potency with a wide variety of neutral, polar, electron withdrawing or donating groups on the phenylalanine ring (IC50 approximately 1 nM). Heteroaryl ring substitution for phenylalanine was also well tolerated. Pharmacokinetic studies in rat were performed on a representative set of compounds in both series.


Subject(s)
Dipeptides/pharmacokinetics , Integrin alpha4beta1/antagonists & inhibitors , Animals , Biological Availability , Dipeptides/chemical synthesis , Dipeptides/chemistry , Dogs , Haplorhini , Inhibitory Concentration 50 , Metabolic Clearance Rate , Phenylalanine , Rats , Rats, Sprague-Dawley , Sheep , Structure-Activity Relationship , Sulfones , Vascular Cell Adhesion Molecule-1/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...