Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 12236, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37507404

ABSTRACT

Glioblastomas are highly aggressive brain tumors for which therapeutic options are very limited. In a quest for new anti-glioblastoma drugs, we focused on specific structural modifications to the benzoyl-phenoxy-acetamide (BPA) structure present in a common lipid-lowering drug, fenofibrate, and in our first prototype glioblastoma drug, PP1. Here, we propose extensive computational analyses to improve the selection of the most effective glioblastoma drug candidates. Initially, over 100 structural BPA variations were analyzed and their physicochemical properties, such as water solubility (- logS), calculated partition coefficient (ClogP), probability for BBB crossing (BBB_SCORE), probability for CNS penetration (CNS-MPO) and calculated cardiotoxicity (hERG), were evaluated. This integrated approach allowed us to select pyridine variants of BPA that show improved BBB penetration, water solubility, and low cardiotoxicity. Herein the top 24 compounds were synthesized and analyzed in cell culture. Six of them demonstrated glioblastoma toxicity with IC50 ranging from 0.59 to 3.24 µM. Importantly, one of the compounds, HR68, accumulated in the brain tumor tissue at 3.7 ± 0.5 µM, which exceeds its glioblastoma IC50 (1.17 µM) by over threefold.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Blood-Brain Barrier , Cardiotoxicity , Glioblastoma/drug therapy , Glioblastoma/pathology , Brain Neoplasms/drug therapy , Computer Simulation , Acetamides/pharmacology , Pyridines/pharmacology , Water/pharmacology , Cell Line, Tumor
2.
Sci Rep ; 12(1): 3384, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35232976

ABSTRACT

Glioblastomas are the most aggressive brain tumors for which therapeutic options are limited. Current therapies against glioblastoma include surgical resection, followed by radiotherapy plus concomitant treatment and maintenance with temozolomide (TMZ), however, these standard therapies are often ineffective, and average survival time for glioblastoma patients is between 12 and 18 months. We have previously reported a strong anti-glioblastoma activity of several metabolic compounds, which were synthetized based compounds, which were synthetized based on the chemical structure of a common lipid-lowering drug, fenofibrate, and share a general molecular skeleton of benzoylphenoxyacetamide (BPA). Extensive computational analyses of phenol and naphthol moieties added to the BPA skeleton were performed in this study with the objective of selecting new BPA variants for subsequent compound preparation and anti-glioblastoma testing. Initially, 81 structural variations were considered and their physical properties such as solubility (logS), blood-brain partitioning (logBB), and probability of entering the CNS calculated by the Central Nervous System-Multiparameter Optimization (MPO-CNS) algorithm were evaluated. From this initial list, 18 compounds were further evaluated for anti-glioblastoma activity in vitro. Nine compounds demonstrated desirable glioblastoma cell toxicity in cell culture, and two of them, HR51, and HR59 demonstrated significantly improved capability of crossing the model blood-brain-barrier (BBB) composed of endothelial cells, astrocytes and pericytes.


Subject(s)
Brain Neoplasms , Glioblastoma , Antineoplastic Agents, Alkylating/pharmacology , Blood-Brain Barrier/metabolism , Brain Neoplasms/pathology , Endothelial Cells/metabolism , Glioblastoma/pathology , Humans , Temozolomide/pharmacology
3.
Sci Rep ; 9(1): 17021, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31745126

ABSTRACT

Structural variations of the benzylphenoxyacetamide (BPA) molecular skeleton were explored as a viable starting point for designing new anti-glioblastoma drug candidates. Hand-to-hand computational evaluation, chemical modifications, and cell viability testing were performed to explore the importance of some of the structural properties in order to generate, retain, and improve desired anti-glioblastoma characteristics. It was demonstrated that several structural features are required to retain the anti-glioblastoma activity, including a carbonyl group of the benzophenone moiety, as well as 4'-chloro and 2,2-dimethy substituents. In addition, the structure of the amide moiety can be modified in such a way that desirable anti-glioblastoma and physical properties can be improved. Via these structural modifications, more than 50 compounds were prepared and tested for anti-glioblastoma activity. Four compounds were identified (HR28, HR32, HR37, and HR46) that in addition to HR40 (PP1) from our previous study, have been determined to have desirable physical and biological properties. These include high glioblastoma cytotoxicity at low µM concentrations, improved water solubility, and the ability to penetrate the blood brain barrier (BBB), which indicate a potential for becoming a new class of anti-glioblastoma drugs.


Subject(s)
Acetamides/pharmacology , Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Drug Discovery/methods , Drug Screening Assays, Antitumor/methods , Glioblastoma/drug therapy , Blood-Brain Barrier , Cell Line, Tumor , Cell Survival/drug effects , Fenofibrate/pharmacology , Humans , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...