Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38836694

ABSTRACT

OBJECTIVES: An aerosol box aims to reduce the risk of healthcare provider (HCP) exposure to infections during aerosol generating medical procedures (AGMPs), but little is known about its impact on workload of team members. We conducted a secondary analysis of data from a prospective, multicenter, randomized controlled trial evaluating the impact of aerosol box use on patterns of HCP contamination during AGMPs. The objectives of this study are to: 1) evaluate the effect of aerosol box use on HCP workload, 2) identify factors associated with HCP workload when using an aerosol box, and 3) describe the challenges perceived by HCPs of aerosol box use. DESIGN: Simulation-based randomized trial, conducted from May to December 2021. SETTING: Four pediatric simulation centers. SUBJECTS: Teams of two HCPs were randomly assigned to control (no aerosol box) or intervention groups (aerosol box). INTERVENTIONS: Each team performed three scenarios requiring different pediatric airway management (bag-valve-mask [BVM] ventilation, laryngeal mask airway [LMA] insertion, and endotracheal intubation [ETI] with video laryngoscopy) on a simulated COVID-19 patient. National Aeronautics and Space Administration-Task Load Index (NASA-TLX) is a standard tool that measures subjective workload with six subscales. MEASUREMENTS AND MAIN RESULTS: A total of 64 teams (128 participants) were recruited. The use of aerosol box was associated with significantly higher frustration during LMA insertion (28.71 vs. 17.42; mean difference, 11.29; 95% CI, 0.92-21.66; p = 0.033). For ETI, there was a significant increase in most subscales in the intervention group, but there was no significant difference for BMV. Average NASA-TLX scores were all in the "low" range for both groups (range: control BVM 23.06, sd 13.91 to intervention ETI 38.15; sd 20.45). The effect of provider role on workloads was statistically significant only for physical demand (p = 0.001). As the complexity of procedure increased (BVM → LMA → ETI), the workload increased in all six subscales (p < 0.05). CONCLUSIONS: The use of aerosol box increased workload during ETI but not with BVM and LMA insertion. Overall workload scores remained in the "low" range, and there was no significant difference between airway provider and assistant.

2.
JAMA Netw Open ; 6(4): e237894, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37043197

ABSTRACT

Importance: The aerosol box has been used during the management of patients with COVID-19 to reduce health care practitioner (HCP) exposure during aerosol-generating medical procedures (AGMPs). Little is known about the effect of aerosol box use on HCP contamination and AGMP procedure time. Objective: To investigate whether use of an aerosol box during AGMPs reduces HCP contamination or influences the time to successful completion and first-pass success rate for endotracheal intubation (ETI) and laryngeal mask airway (LMA) insertion. Design, Setting, and Participants: This multicenter, simulation-based, randomized clinical trial was conducted from May to December 2021 at tertiary care pediatric hospitals. Participant teams performed 3 simulated patient scenarios: bag-valve-mask ventilation, ETI, and LMA insertion. During the scenarios, aerosols were generated using Glo Germ. Teams of 2 HCPs were randomly assigned to control (no aerosol box) or intervention groups (aerosol box). Statistical analysis was performed from July 2022 to February 2023. Interventions: The aerosol box (or SplashGuard CG) is a transparent, plastic barrier covering the patient's head and shoulders with access ports allowing HCPs to manage the airway. Main Outcomes and Measures: The primary outcome was surface area of contamination (AOC) on participants. Secondary outcomes were time to successful completion and first-pass success rates for ETI and LMA insertion. Results: A total of 64 teams (128 participants) were enrolled, with data from 61 teams (122 participants) analyzed. Among the 122 participants analyzed, 79 (64.8%) were female and 85 (69.7%) were physicians. Use of an aerosol box was associated with a 77.5% overall decreased AOC to the torso (95% CI, -86.3% to -62.9%; P < .001) and a 60.7% overall decreased AOC to the facial area (95% CI, -75.2% to -37.8%; P < .001) in airway HCPs. There was no statistically significant difference in surface contamination after doffing personal protective equipment between groups. Time to completing ETI was longer in the aerosol box group compared with the control group (mean difference: 10.2 seconds; 95% CI, 0.2 to 20.2 seconds; P = .04), but there was no difference between groups for LMA insertion (mean difference: 2.4 seconds; 95% CI, -8.7 to 13.5 seconds; P = .67). Conclusions and Relevance: In this randomized clinical trial of aerosol box use in AGMPs, use of an aerosol box reduced contamination deposition on HCPs' torso and face predoffing; the use of an aerosol box delayed time to successful intubation. These results suggest that the incremental benefits of reduced surface contamination from aerosol box use should be weighed against delayed time to complete intubation, which may negatively affect patient outcome. Trial Registration: ClinicalTrials.gov Identifier: NCT04880668.


Subject(s)
COVID-19 , Humans , Female , Child , Male , COVID-19/prevention & control , COVID-19/etiology , Respiratory Aerosols and Droplets , Intubation, Intratracheal/methods , Personal Protective Equipment , Health Personnel
SELECTION OF CITATIONS
SEARCH DETAIL
...