Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 6): 667-670, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38845714

ABSTRACT

Crystal formation of penta-sodium nona-deca-cesium tetra-cosa-tungstate(VI) heneikosahydrate, Na5Cs19[W24O84]·21H2O, was successfully achieved by the conversion of [H2W12O42]10- through the addition of excess Cs+. The crystal structure comprising the toroidal isopolyoxidometalate is presented, as well as its Raman spectrum. Na5Cs19(H2O)21W24O84 crystallizes in the rhombohedral space group R with an obverse centering. The title compound represents the addition of a new member to the isopolytungstate family with mixed alkali counter-ions and contains rarely observed five-coordinate tungsten(VI) atoms in the [W24O84]24- anion (site symmetry C 3i ) arising from the conversion mediated by Cs+ counter-ions.

2.
Chem Commun (Camb) ; 60(47): 5999-6002, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38747262

ABSTRACT

Leveraging microgram-level techniques, we here present the first transplutonium bis-pentatungstate complex: NaCs8Cm(W5O18)2·14H2O (CmW5). Single crystal XRD, Raman, and fluorescence characterization show significant differences relative to analogous lanthanide compounds. The study reveals the unsuspected impact of counterions on fluorescence and vibrational modes of the curium complex and its lanthanide counterparts.

3.
Acc Chem Res ; 56(24): 3616-3625, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38015808

ABSTRACT

ConspectusPolyoxometalates (POMs, metals = V4/5+, Nb5+, Ta5+, Mo5/6+, and W5/6+) can be described as molecular metal oxides. The V, Mo, and W-POMs (classic POMs) exhibit rich structural diversity with interesting redox properties, acid catalysis, inorganic ligands, and colorimetric properties and behavior. Nb and Ta POMs, while structurally similar, are generally stable only in base and redox behavior is rare, and they are synthetically far less accessible. The V, Mo, and W-POMs have been studied for well over a century, Nb-POM chemistry has emerged in the last 20 years, and Ta-POM chemistry is yet to see consistent and significant advances. Early and current success in Nb-POM chemistry is owed mainly to hydrothermal synthesis, which is wholly unsatisfying, given the black box nature of this technique.For the last 5 years and as summarized in this Account, we have exploited decaniobate, [Nb10O28]6- (Nb10), as a foundation to perform room-temperature, nearly pH-neutral manipulations of Nb-POM solutions. Nb10, with a rare neutral self-buffering pH, responds to any interactions with electrolytes (specifically oxoanions and metal cations) by undergoing transformations, leading to new topologies. The ease of Nb10 transformation yielding new generations of Nb-POMs, akin to an inorganic analogue of biological model organisms such as the fruit fly, inspired the title of this Account. The common building unit born from the disassembly of Nb10 is [Nb7O20(OH, H2O)2](5-7)-, and the hydroxyl/aqua ligands provide reactivity for linking via condensation reactions, ligand exchange, heterometals, or oxoanions. We can coax these newly assembled Nb-POMs (detected by small-angle X-ray scattering, SAXS) to crystallize via the usual methods of vapor diffusion, salting out, and reduced temperature, and the single-crystal X-ray diffraction structures are valuable for understanding reaction mechanisms to fine-tune control and yield a landscape of topologies and compositions. Beyond providing an opportunity to comprehend and diversify POM chemistry, the reactivity of Nb10 yields highly soluble (i.e., >2 M Nb), nearly neutral aqueous solutions of niobium, ideal for the solution-phase deposition of thin films, demonstrated with LiNbO3, (Na,K)NbO3, Nb2O5, and heterometal-doped Nb2O5. The obtained films are cohesive and smooth, enabled by the tendency of these solutions to gel if simply evaporated quickly.Per our current endeavors, this gelation behavior provides an opportunity to develop new soft, flexible materials including inorganic networks, organic-inorganic networks, and porous solids and explore their material properties including base catalysis and sorption (i.e., CO2). Nb-POM (and Ta-POM) discovery and implementation of properties is far from complete. While heterometal (d and f element) substitution is easy with classic POMs, imparting a whole host of functions (tuned luminescence, catalysis, electroactivity, etc.), it remains a challenge with Nb-POMs due to pH incompatibility with most heterometals. This grand challenge that defies fundamental aqueous behavior of metal cations requires the creation of liquid mixtures that include polymer and/or ionic liquid components, and the creation of such reaction media can impact synthesis beyond POM chemistry. The goal of this Account is to describe the recent advances in Nb-POM chemistry, afforded by the Nb10 "fruit fly", and to also provide insight into the next large steps needed to advance Nb-POM chemistry.

4.
Inorg Chem ; 62(5): 1891-1900, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-35785799

ABSTRACT

Isolating isostructural compounds of tetravalent metals MIV (Zr, Hf, Ce, Th, U, Pu, Np) improves our understanding of metal hydrolysis and coordination behavior across the periodic table. These metals form polynuclear clusters typified by the hexamer [MIV6O4(OH)4]12+. Exploiting the ammonium MIV-sulfate (CeIV, ThIV, and UIV) phase space targeting rapid crystallization, we isolate the common hexamer [MIV6(OH)4(O)4]12+ but with different numbers of capping sulfates and water molecules for CeIV, ThIV, and UIV. These phases allowed a direct comparison of bonding trends across the series. Upon cocrystallization with the hexamers, higher complex structures can be identified. Thorium features assemblies with monomer-linked hexamer chains. Uranium features assemblies with sulfate-bridged hexamers and the supramolecular assembly of 14 hexamers into the U84, [U6(OH)4(O)4)14(SO4)120(H2O)42]72-. Last, cerium showcases the isolation from monomers to the Ce62, [Ce62(OH)30(O)58(SO4)71(H2O)33.25]41-. Furthermore, small-angle X-ray scattering (room temperature) shows ammonium-induced cluster assembly for CeIV but minimal reactivity for UIV and ThIV. In this study, because the phases crystallized at elevated temperature demonstrates favorable cluster assembly, these solution phase results were surprising and suggest some other characteristics such as Ce's facile redox behavior, contributes to its solution-phase speciation.

5.
Inorg Chem ; 62(16): 6242-6254, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-36580490

ABSTRACT

Deciphering the solution chemistry and speciation of actinides is inherently difficult due to radioactivity, rarity, and cost constraints, especially for transplutonium elements. In this context, the development of new chelating platforms for actinides and associated spectroscopic techniques is particularly important. In this study, we investigate a relatively overlooked class of chelators for actinide binding, namely, polyoxometalates (POMs). We provide the first NMR measurements on americium-POM and curium-POM complexes, using one-dimensional (1D) 31P NMR, variable-temperature NMR, and spin-lattice relaxation time (T1) experiments. The proposed POM-NMR approach allows for the study of trivalent f-elements even when only microgram amounts are available and in phosphate-containing solutions where f-elements are typically insoluble. The solution-state speciation of trivalent americium, curium, plus multiple lanthanide ions (La3+, Nd3+, Sm3+, Eu3+, Yb3+, and Lu3+), in the presence of the model POM ligand PW11O397- was elucidated and revealed the concurrent formation of two stable complexes, [MIII(PW11O39)(H2O)x]4- and [MIII(PW11O39)2]11-. Interconversion reaction constants, reaction enthalpies, and reaction entropies were derived from the NMR data. The NMR results also provide experimental evidence of the weakly paramagnetic nature of the Am3+ and Cm3+ ions in solution. Furthermore, the study reveals a previously unnoticed periodicity break along the f-element series with the reversal of T1 relaxation times of the 1:1 and 1:2 complexes and the preferential formation of the long T1 species for the early lanthanides versus the short T1 species for the late lanthanides, americium, and curium. Given the broad variety of POM ligands that exist, with many of them containing NMR-active nuclei, the combined POM-NMR approach reported here opens a new avenue to investigate difficult-to-study elements such as heavy actinides and other radionuclides.

6.
Nat Chem ; 14(12): 1357-1366, 2022 12.
Article in English | MEDLINE | ID: mdl-36050378

ABSTRACT

The synthesis and study of radioactive compounds are both inherently limited by their toxicity, cost and isotope scarcity. Traditional methods using small inorganic or organic complexes typically require milligrams of sample-per attempt-which for some isotopes is equivalent to the world's annual supply. Here we demonstrate that polyoxometalates (POMs) enable the facile formation, crystallization, handling and detailed characterization of metal-ligand complexes from microgram quantities owing to their high molecular weight and controllable solubility properties. Three curium-POM complexes were prepared, using just 1-10 µg per synthesis of the rare isotope 248Cm3+, and characterized by single-crystal X-ray diffraction, showing an eight-coordinated Cm3+ centre. Moreover, spectrophotometric, fluorescence, NMR and Raman analyses of several f-block element-POM complexes, including 243Am3+ and 248Cm3+, showed otherwise unnoticeable differences between their solution versus solid-state chemistry, and actinide versus lanthanide behaviour. This POM-driven strategy represents a viable path to isolate even rarer complexes, notably with actinium or transcalifornium elements.


Subject(s)
Coordination Complexes , Ligands , Anions , Crystallography, X-Ray , Isotopes
7.
Article in English | MEDLINE | ID: mdl-35834365

ABSTRACT

Atomically precise cerium oxo clusters offer a platform to investigate structure-property relationships that are much more complex in the ill-defined bulk material cerium dioxide. We investigated the activity of the MCe70 torus family (M = Cd, Ce, Co, Cu, Fe, Ni, and Zn), a family of discrete oxysulfate-based Ce70 rings linked by monomeric cation units, for CO oxidation. CuCe70 emerged as the best performing MCe70 catalyst among those tested, prompting our exploration of the role of the interfacial unit on catalytic activity. Temperature-programmed reduction (TPR) studies of the catalysts indicated a lower temperature reduction in CuCe70 as compared to CeCe70. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) indicated that CuCe70 exhibited a faster formation of Ce3+ and contained CO bridging sites absent in CeCe70. Isothermal CO adsorption measurements demonstrated a greater uptake of CO by CuCe70 as compared to CeCe70. The calculated energies for the formation of a single oxygen defect in the structure significantly decreased with the presence of Cu at the linkage site as opposed to Ce. This study revealed that atomic-level changes in the interfacial unit can change the reducibility, CO binding/uptake, and oxygen vacancy defect formation energetics in the MCe70 family to thus tune their catalytic activity.

8.
J Am Chem Soc ; 144(20): 8951-8960, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35536652

ABSTRACT

Aqueous solutions of polyoxometalates (POMs) have been shown to have potential as high-capacity energy storage materials due to their potential for multi-electron redox processes, yet the mechanism of reduction and practical limits are currently unknown. Herein, we explore the mechanism of multi-electron redox processes that allow the highly reduced POM clusters of the form {MO3}y to absorb y electrons in aqueous solution, focusing mechanistically on the Wells-Dawson structure X6[P2W18O62], which comprises 18 metal centers and can uptake up to 18 electrons reversibly (y = 18) per cluster in aqueous solution when the countercations are lithium. This unconventional redox activity is rationalized by density functional theory, molecular dynamics simulations, UV-vis, electron paramagnetic resonance spectroscopy, and small-angle X-ray scattering spectra. These data point to a new phenomenon showing that cluster protonation and aggregation allow the formation of highly electron-rich meta-stable systems in aqueous solution, which produce H2 when the solution is diluted. Finally, we show that this understanding is transferrable to other salts of [P5W30O110]15- and [P8W48O184]40- anions, which can be charged to 23 and 27 electrons per cluster, respectively.

9.
J Am Chem Soc ; 143(49): 21056-21065, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34873904

ABSTRACT

Heterometallic CeIV/M oxo clusters are underexplored yet and can benefit from synergistic properties from combining cerium and other metal cations to produce efficient redox catalysts. Herein, we designed and synthesized a series of new Ce12V6 oxo clusters with different capping ligands: Ce12V6-SO4, Ce12V6-OTs (OTs: toluenesulfonic acid), and Ce12V6-NBSA (NBSA: nitrobenzenesulfonic acid). Single crystal X-ray diffraction (SCXRD) for all three structures reveals a Ce12V6 cubane core formulated [Ce12(VO)6O24]18+ with cerium on the edges of the cube, vanadyl capping the faces, and sulfate on the corners. While infrared spectroscopy (IR), ultraviolet-visible spectroscopy (UV-vis), electrospray ionization mass spectrometry (ESI-MS), and proton nuclear magnetic resonance (1H NMR) proved the successful coordination of the organic ligands to the Ce12V6 core, liquid phase 51V NMR and small-angle X-ray scattering (SAXS) confirmed the integrity of the clusters in the organic solutions. Furthermore, functionalization of the Ce12V6 core with organic ligands both provides increased solubility in term of homogeneous application and introduces porosity to the assemblies of Ce12V6-OTs and Ce12V6-NBSA in term of heterogeneous application, thus allowing more catalytic sites to be accessible and improving reactivity as compared to the nonporous and less soluble Ce12V6-SO4. Meanwhile, the coordinated ligands also influenced the electronic environment of the catalytic sites, in turn affecting the reactivity of the cluster, which we probed by the selective oxidation of 2-chloroethyl ethyl sulfide (CEES). This work provides a strategy to make full use of the catalytic sites within a class of inorganic sulfate capped clusters via organic ligand introduction.

10.
J Am Chem Soc ; 143(25): 9612-9621, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34138543

ABSTRACT

Crystallization at the solid-liquid interface is difficult to spectroscopically observe and therefore challenging to understand and ultimately control at the molecular level. The Ce70-torroid formulated [CeIV70(OH)36(O)64(SO4)60(H2O)10]4-, part of a larger emerging family of MIV70-materials (M = Zr, U, Ce), presents such an opportunity. We elucidated assembly mechanisms by the X-ray scattering (small-angle scattering and total scattering) of solutions and solids as well as crystallizing and identifying fragments of Ce70 by single-crystal X-ray diffraction. Fragments show evidence for templated growth (Ce5, [Ce5(O)3(SO4)12]10-) and modular assembly from hexamer (Ce6) building units (Ce13, [Ce13(OH)6(O)12(SO4)14(H2O)14]6- and Ce62, [Ce62(OH)30(O)58(SO4)58]14-). Ce62, an almost complete ring, precipitates instantaneously in the presence of ammonium cations as two torqued arcs that interlock by hydrogen boding through NH4+, a structural motif not observed before in inorganic systems. The room temperature rapid assemblies of both Ce70 and Ce62, respectively, by the addition of Li+ and NH4+, along with ion-exchange and redox behavior, invite exploitation of this emerging material family in environmental and energy applications.

11.
ACS Appl Mater Interfaces ; 13(16): 19497-19506, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33856779

ABSTRACT

Polyoxometalate (POM)-based ionic liquids, with nearly infinite compositional variations to fine-tune antimicrobial and physical properties, function as water purification filters, anticorrosion/antibacterial coatings for natural stones, self-repairing acid-resistant coatings, catalysts, and electroactive, stable solvents. By combining hydrophobic quaternary ammonium cations (QACs; tetraheptylammonium and trihexyltetradecylammonium) with butyltin-substituted polyoxotungstates [(BuSn)3(α-SiW9O37)] via repeated solvent extraction-ion exchange, we obtained phase-pure hybrid POM salts (referred to as such because they melt above room temperature). If the solvent extraction process is performed only once, then solids with high salt contamination and considerably lower melting temperatures are obtained. Solution-phase behavior, based on POM-QAC interactions, was similar for all formulations in polar and nonpolar organic solvents, as observed by X-ray scattering and multinuclear magnetic resonance spectroscopy. However, solid thin films of the butyltin-functionalized hybrid POM salts were significantly more stable and adhesive than their inorganic analogues. We attribute this to the favorable hydrophobic interactions between the butyltin groups and the QACs. All synthesized hybrid POM salts display a potent antimicrobial activity toward Escherichia coli. These studies provide fundamental form-function understanding of hybrid POM salts, based on interactions between ions in these complex hybrid phases.

12.
Angew Chem Int Ed Engl ; 60(13): 7308-7315, 2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33415775

ABSTRACT

MIV molecular oxo-clusters (M=Zr, Hf, Ce, Th, U, Np, Pu) are prolific in bottoms-up material design, catalysis, and elucidating reaction pathways in nature and in synthesis. Here we introduce Ce70 , a wheel-shaped oxo-cluster, [CeIV 70 (OH)36 (O)64 (SO4 )60 (H2 O)10 ]4- . Ce70 crystallizes into intricate high pore volume frameworks with divalent transition metals and Ce-monomer linkers. Eight crystal-structures feature four framework types in which the Ce70 -rings are linked as propellers, in offset-stacks, in a tartan pattern, and as isolated rings. Small-angle X-ray scattering of Ce70 dissolved in butylamine, with and without added cations (CeIV , alkaline earths, MnII ), shows the metals' differentiating roles in ring linking, leading to supramolecular assemblies. The large acidic pores and abundant terminal sulfates provide ion-exchange behavior, demonstrated with UIV and NdIII . Frameworks featuring CeIII/IV -monomer linkers demonstrate both oxidation and reduction. This study opens the door to mixed-metal, highly porous framework catalysts, and new clusters for metal-organic framework design.

13.
Inorg Chem ; 59(23): 17049-17057, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33211485

ABSTRACT

Isolating isomorphic compounds of tetravalent actinides (i.e., ThIV, UIV, NpIV, and PuIV) improve our understanding of the bonding behavior across the series, in addition to their relationship with tetravalent transition metals (Zr and Hf) and lanthanides (Ce). Similarities between these tetravalent metals are particularly illuminated in their hydrolysis and condensation behavior in aqueous systems, leading to polynuclear clusters typified by the hexamer [MIV6O4(OH)4]12+ building block. Prior studies have shown the predominance and coexistence of smaller species for ThIV (monomers, dimers, and hexamers) and larger species for UIV, NpIV, and PuIV (including 38-mers and 70-mers). We show here that aqueous uranium(IV) sulfate also displays behavior similar to that of ThIV (and ZrIV) in its isolated solid-phase and solution speciation. Two single-crystal X-ray structures are described: a dihydroxide-bridged dimer (U2) formulated as U2(OH)2(SO4)3(H2O)4 and a monomer-linked hexamer framework (U-U6) as (U(H2O)3.5)2U6O4(OH)4(SO4)10(H2O)9. These structures are similar to those previously described for ThIV. Moreover, cocrystallization of monomer and dimer and of dimer and monomer-hexamer phases for both ThIV (prior) and UIV (current) indicates the coexistence of these species in solution. Because it was not possible to effectively study the sulfate-rich solutions via X-ray scattering from which U2 and U-U6 crystallized, we provide a parallel solution speciation study in low sulfate conditions, as a function of the pH. Raman spectroscopy, UV-vis spectroscopy, and small-angle X-ray scattering of these show decreasing sulfate binding, increased hydrolysis, increased species size, and increased complexity, with increasing pH. This study describes a bridge across the first half the actinide series, highlighting UIV similarities to ThIV, in addition to the previously known similarities to the transuranic elements.

14.
Chemistry ; 26(54): 12481-12488, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32609912

ABSTRACT

Uranium(IV) oxide clusters, colloids, and materials are designed and studied for 1) nuclear materials applications, 2) understanding the environmental fate and transport of actinides, and 3) exploring the complex bonding behavior of open-shell f-elements. UIV -oxyhydroxsulfate clusters are particularly relevant in industrial processes and in nature. Recent studies have shown that counter-cations to these polynuclear anions differentiate rich structural topologies in the solid-state. Herein, we present nine different structures with wheel-shaped [U70 (OH)36 (O)64 (SO4 )60 ]4- (U70 ) linked into one- and two-dimensional frameworks with sulfate, divalent transition metals (CrII , FeII , CoII , NiII ) and UV . Small-angle X-ray scattering of these phases dissolved in butylamine reveals differing supramolecular assembly of U70 clusters, controlled primarily by sulfates. However, observed trends in transition metal linking guide future design of U70 materials with different topologies. Finally, U70 linking via UIV -O-UV -O-UIV bridges presents a rare example of mixed-oxidation-state uranium oxides without disorder.

15.
J Am Chem Soc ; 142(19): 9039-9047, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32319763

ABSTRACT

Superatoms are nanometer-sized molecules or particles that form ordered lattices, mimicking their atomic counterparts. Hierarchical assembly of superatoms gives rise to emergent properties in lattices of quantum dots, p-block clusters, and fullerenes. Here, we introduce a family of uranium-oxysulfate cluster anions whose hierarchical assembly in water is controlled by two parameters: acidity and the lanthanide or transition-metal countercation. In acid, larger LnIII (Ln = La-Ho) link hexamer (U6) oxoclusters into body-centered cubic frameworks, while smaller LnIII (Ln = Er-Lu and Y) promote linking of 14 U6 clusters into hollow superclusters (U84 superatoms). U84 assembles into superlattices including cubic-closest packed, body-centered cubic, and interpenetrating networks, bridged by interstitial countercations and U6 clusters. Divalent transition metals (TM = MnII and ZnII) charge-balance and promote the fusion of 10 U6 and 10 U monomers into a wheel-shaped cluster (U70). Dissolution of U70 in organic media reveals (by small-angle X-ray scattering) that differing supramolecular assemblies are accessed, controlled by TMII-linking of U70 clusters. Magnetic measurements of these assemblies reveal Curie-Weiss behavior at high temperatures, without pairing of the 5f2-electrons down to 2 K.

16.
Inorg Chem ; 58(16): 10871-10882, 2019 Aug 19.
Article in English | MEDLINE | ID: mdl-31356061

ABSTRACT

Two thorium(IV) compounds, [Th(H2O)4Cl4]·2(HPy·Cl) (1) and (HPy)3[Th3(H2O)2Cl10(OH)5]·4(HPy·Cl) (2) (HPy = pyridinium), were isolated from acidic aqueous solution. The compounds were synthesized at room temperature and subsequently characterized using single crystal X-ray diffraction along with Raman and IR spectroscopies. Whereas compound 1 is built from discrete mononuclear Th(H2O)4Cl4 units, compound 2 consists of a novel hydroxo-bridged trimeric [Th3(OH)5]7+ core. Such species are largely absent from discussions of Th solution and solid-state chemistry and their isolation may be attributed to outer coordination sphere interactions that help stabilize the structural units; extensive hydrogen bonding and π-π stacking interactions are present in 1 and 2. Density functional theory calculations were performed to predict the respective vibrational frequencies of the structural units, and their relative stability was predicted at the correlated molecular theory level. Small-angle X-ray scattering analysis of [Th3(OH)5]7+ in water indicates that the trimeric structural unit remains intact and that it is indeed an important species that necessitates consideration in geochemical models and for design of Th materials from water.

17.
Inorg Chem ; 57(12): 7259-7269, 2018 Jun 18.
Article in English | MEDLINE | ID: mdl-29877086

ABSTRACT

Organic ligands with carboxylate functionalities have been shown to affect the solubility, speciation, and overall chemical behavior of tetravalent metal ions. While many reports have focused on actinide complexation by relatively simple monocarboxylates such as amino acids, in this work we examined Th(IV) and U(IV) complexation by 4-hydroxybenzoic acid in water with the aim of understanding the impact that the organic backbone has on the solution and solid state structural chemistry of thorium(IV) and uranium(IV) complexes. Two compounds of the general formula [An6O4(OH)4(H2O)6(4-HB)12]· nH2O [An = Th (Th-1) and U (U-1); 4-HB = 4-hydroxybenzoate] were synthesized via room-temperature reactions of AnCl4 and 4-hydroxybenzoic acid in water. Solid state structures were determined by single-crystal X-ray diffraction, and the compounds were further characterized by Raman, infrared, and optical spectroscopies and thermogravimetry. The magnetism of U-1 was also examined. The structures of the Th and U compounds are isomorphous and are built from ligand-decorated oxo/hydroxo-bridged hexanuclear units. The relationship between the building units observed in the solid state structure of U-1 and those that exist in solution prior to crystallization as well as upon dissolution of U-1 in nonaqueous solvents was investigated using small-angle X-ray scattering, ultraviolet-visible optical spectroscopy, and dynamic light scattering. The evolution of U solution speciation as a function of reaction time and temperature was examined. Such effects as well as the impact of the ligand on the formation and evolution of hexanuclear U(IV) clusters to UO2 nanoparticles compared to prior reported monocarboxylate ligand systems are discussed. Unlike prior reported syntheses of Th and U(IV) hexamers where the pH was adjusted to ∼2 and 3, respectively, to drive hydrolysis, hexamer formation with the HB ligand appears to be promoted only by the ligand.

SELECTION OF CITATIONS
SEARCH DETAIL
...