Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 112022 09 12.
Article in English | MEDLINE | ID: mdl-36094369

ABSTRACT

The ring model proposes that sister chromatid cohesion is mediated by co-entrapment of sister DNAs inside a single tripartite cohesin ring. The model explains how Scc1 cleavage triggers anaphase but has hitherto only been rigorously tested using small circular mini-chromosomes in yeast, where covalently circularizing the ring by crosslinking its three interfaces induces catenation of individual and sister DNAs. If the model applies to real chromatids, then the ring must have a DNA entry gate essential for mitosis. Whether this is situated at the Smc3/Scc1 or Smc1/Smc3 hinge interface is an open question. We have previously demonstrated DNA entrapment by cohesin in vitro (Collier et al., 2020). Here we show that cohesin in fact possesses two DNA gates, one at the Smc3/Scc1 interface and a second at the Smc1/3 hinge. Unlike the Smc3/Scc1 interface, passage of DNAs through SMC hinges depends on both Scc2 and Scc3, a pair of regulatory subunits necessary for entrapment in vivo. This property together with the lethality caused by locking this interface but not that between Smc3 and Scc1 in vivo suggests that passage of DNAs through the hinge is essential for building sister chromatid cohesion. Passage of DNAs through the Smc3/Scc1 interface is necessary for cohesin's separase-independent release from chromosomes and may therefore largely serve as an exit gate.


Subject(s)
Chromatids , Saccharomyces cerevisiae Proteins , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Cohesins
2.
Elife ; 92020 09 15.
Article in English | MEDLINE | ID: mdl-32930661

ABSTRACT

In addition to extruding DNA loops, cohesin entraps within its SMC-kleisin ring (S-K) individual DNAs during G1 and sister DNAs during S-phase. All three activities require related hook-shaped proteins called Scc2 and Scc3. Using thiol-specific crosslinking we provide rigorous proof of entrapment activity in vitro. Scc2 alone promotes entrapment of DNAs in the E-S and E-K compartments, between ATP-bound engaged heads and the SMC hinge and associated kleisin, respectively. This does not require ATP hydrolysis nor is it accompanied by entrapment within S-K rings, which is a slower process requiring Scc3. Cryo-EM reveals that DNAs transported into E-S/E-K compartments are 'clamped' in a sub-compartment created by Scc2's association with engaged heads whose coiled coils are folded around their elbow. We suggest that clamping may be a recurrent feature of cohesin complexes active in loop extrusion and that this conformation precedes the S-K entrapment required for sister chromatid cohesion.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA, Fungal/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/genetics , DNA, Fungal/chemistry , DNA, Fungal/genetics , Models, Molecular , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Cohesins
3.
Cell ; 173(6): 1508-1519.e18, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29754816

ABSTRACT

As predicted by the notion that sister chromatid cohesion is mediated by entrapment of sister DNAs inside cohesin rings, there is perfect correlation between co-entrapment of circular minichromosomes and sister chromatid cohesion. In most cells where cohesin loads without conferring cohesion, it does so by entrapment of individual DNAs. However, cohesin with a hinge domain whose positively charged lumen is neutralized loads and moves along chromatin despite failing to entrap DNAs. Thus, cohesin engages chromatin in non-topological, as well as topological, manners. Since hinge mutations, but not Smc-kleisin fusions, abolish entrapment, DNAs may enter cohesin rings through hinge opening. Mutation of three highly conserved lysine residues inside the Smc1 moiety of Smc1/3 hinges abolishes all loading without affecting cohesin's recruitment to CEN loading sites or its ability to hydrolyze ATP. We suggest that loading and translocation are mediated by conformational changes in cohesin's hinge driven by cycles of ATP hydrolysis.


Subject(s)
Cell Cycle Proteins/chemistry , Chromatids/chemistry , Chromosomal Proteins, Non-Histone/chemistry , DNA/chemistry , Adenosine Triphosphate/chemistry , Animals , Binding Sites , Chromatin/chemistry , Humans , Hydrolysis , Lysine/chemistry , Mice , Mutation , Nuclear Proteins/genetics , Protein Conformation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Cohesins
SELECTION OF CITATIONS
SEARCH DETAIL
...