Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(5): eadd2143, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36724230

ABSTRACT

Volatiles expelled from subducted plates promote melting of the overlying warm mantle, feeding arc volcanism. However, debates continue over the factors controlling melt generation and transport, and how these determine the placement of volcanoes. To broaden our synoptic view of these fundamental mantle wedge processes, we image seismic attenuation beneath the Lesser Antilles arc, an end-member system that slowly subducts old, tectonized lithosphere. Punctuated anomalies with high ratios of bulk-to-shear attenuation (Qκ-1/Qµ-1 > 0.6) and VP/VS (>1.83) lie 40 km above the slab, representing expelled fluids that are retained in a cold boundary layer, transporting fluids toward the back-arc. The strongest attenuation (1000/QS ~ 20), characterizing melt in warm mantle, lies beneath the back-arc, revealing how back-arc mantle feeds arc volcanoes. Melt ponds under the upper plate and percolates toward the arc along structures from earlier back-arc spreading, demonstrating how slab dehydration, upper-plate properties, past tectonics, and resulting melt pathways collectively condition volcanism.

2.
Nat Commun ; 12(1): 4211, 2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34244511

ABSTRACT

The margins of the Caribbean and associated hazards and resources have been shaped by a poorly understood history of subduction. Using new data, we improve teleseismic P-wave imaging of the eastern Caribbean upper mantle and compare identified subducted-plate fragments with trench locations predicted from plate reconstruction. This shows that material at 700-1200 km depth below South America derives from 90-115 Myr old westward subduction, initiated prior to Caribbean Large-Igneous-Province volcanism. At shallower depths, an accumulation of subducted material is attributed to Great Arc of the Caribbean subduction as it evolved over the past 70 Ma. We interpret gaps in these subducted-plate anomalies as: a plate window and tear along the subducted Proto-Caribbean ridge; tearing along subducted fracture zones, and subduction of a volatile-rich boundary between Proto-Caribbean and Atlantic domains. Phases of back-arc spreading and arc jumps correlate with changes in age, and hence buoyancy, of the subducting plate.

4.
Nature ; 582(7813): 525-529, 2020 06.
Article in English | MEDLINE | ID: mdl-32581382

ABSTRACT

Oceanic lithosphere carries volatiles, notably water, into the mantle through subduction at convergent plate boundaries. This subducted water exercises control on the production of magma, earthquakes, formation of continental crust and mineral resources. Identifying different potential fluid sources (sediments, crust and mantle lithosphere) and tracing fluids from their release to the surface has proved challenging1. Atlantic subduction zones are a valuable endmember when studying this deep water cycle because hydration in Atlantic lithosphere, produced by slow spreading, is expected to be highly non-uniform2. Here, as part of a multi-disciplinary project in the Lesser Antilles volcanic arc3, we studied boron trace element and isotopic fingerprints of melt inclusions. These reveal that serpentine-that is, hydrated mantle rather than crust or sediments-is a dominant supplier of subducted water to the central arc. This serpentine is most likely to reside in a set of major fracture zones subducted beneath the central arc over approximately the past ten million years. The current dehydration of these fracture zones coincides with the current locations of the highest rates of earthquakes and prominent low shear velocities, whereas the preceding history of dehydration is consistent with the locations of higher volcanic productivity and thicker arc crust. These combined geochemical and geophysical data indicate that the structure and hydration of the subducted plate are directly connected to the evolution of the arc and its associated seismic and volcanic hazards.

5.
Nat Commun ; 8: 15101, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28375202

ABSTRACT

Late Quaternary separation of Britain from mainland Europe is considered to be a consequence of spillover of a large proglacial lake in the Southern North Sea basin. Lake spillover is inferred to have caused breaching of a rock ridge at the Dover Strait, although this hypothesis remains untested. Here we show that opening of the Strait involved at least two major episodes of erosion. Sub-bottom records reveal a remarkable set of sediment-infilled depressions that are deeply incised into bedrock that we interpret as giant plunge pools. These support a model of initial erosion of the Dover Strait by lake overspill, plunge pool erosion by waterfalls and subsequent dam breaching. Cross-cutting of these landforms by a prominent bedrock-eroded valley that is characterized by features associated with catastrophic flooding indicates final breaching of the Strait by high-magnitude flows. These events set-up conditions for island Britain during sea-level highstands and caused large-scale re-routing of NW European drainage.

7.
Nature ; 465(7300): 913-7, 2010 Jun 17.
Article in English | MEDLINE | ID: mdl-20559385

ABSTRACT

Rifting and magmatism are fundamental geological processes that shape the surface of our planet. A relationship between the two is widely acknowledged but its precise nature has eluded geoscientists and remained controversial. Largely on the basis of detailed observations from the North Atlantic Ocean, mantle temperature was identified as the primary factor controlling magmatic production, with most authors seeking to explain observed variations in volcanic activity at rifted margins in terms of the mantle temperature at the time of break-up. However, as more detailed observations have been made at other rifted margins worldwide, the validity of this interpretation and the importance of other factors in controlling break-up style have been much debated. One such observation is from the northwest Indian Ocean, where, despite an unequivocal link between an onshore flood basalt province, continental break-up and a hot-spot track leading to an active ocean island volcano, the associated continental margins show little magmatism. Here we reconcile these observations by applying a numerical model that accounts explicitly for the effects of earlier episodes of extension. Our approach allows us to directly compare break-up magmatism generated at different locations and so isolate the key controlling factors. We show that the volume of rift-related magmatism generated, both in the northwest Indian Ocean and at the better-known North Atlantic margins, depends not only on the mantle temperature but, to a similar degree, on the rift history. The inherited extensional history can either suppress or enhance melt generation, which can explain previously enigmatic observations.

8.
Nature ; 448(7151): 342-5, 2007 Jul 19.
Article in English | MEDLINE | ID: mdl-17637667

ABSTRACT

Megaflood events involving sudden discharges of exceptionally large volumes of water are rare, but can significantly affect landscape evolution, continental-scale drainage patterns and climate change. It has been proposed that a significant flood event eroded a network of large ancient valleys on the floor of the English Channel-the narrow seaway between England and France. This hypothesis has remained untested through lack of direct evidence, and alternative non-catastrophist ideas have been entertained for valley formation. Here we analyse a new regional bathymetric map of part of the English Channel derived from high-resolution sonar data, which shows the morphology of the valley in unprecedented detail. We observe a large bedrock-floored valley that contains a distinct assemblage of landforms, including streamlined islands and longitudinal erosional grooves, which are indicative of large-scale subaerial erosion by high-magnitude water discharges. Our observations support the megaflood model, in which breaching of a rock dam at the Dover Strait instigated catastrophic drainage of a large pro-glacial lake in the southern North Sea basin. We suggest that megaflooding provides an explanation for the permanent isolation of Britain from mainland Europe during interglacial high-sea-level stands, and consequently for patterns of early human colonisation of Britain together with the large-scale reorganization of palaeodrainage in northwest Europe.


Subject(s)
Disasters , Geography , England , History, Ancient , Humans , Oceans and Seas , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...