Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Chemistry ; 18(16): 5022-35, 2012 Apr 16.
Article in English | MEDLINE | ID: mdl-22415854

ABSTRACT

An efficient synthetic route to 2- and 2,7-substituted pyrenes is described. The regiospecific direct C-H borylation of pyrene with an iridium-based catalyst, prepared in situ by the reaction of [{Ir(µ-OMe)cod}(2)] (cod = 1,5-cyclooctadiene) with 4,4'-di-tert-butyl-2,2'-bipyridine, gives 2,7-bis(Bpin)pyrene (1) and 2-(Bpin)pyrene (2, pin = OCMe(2)CMe(2)O). From 1, by simple derivatization strategies, we synthesized 2,7-bis(R)-pyrenes with R = BF(3)K (3), Br (4), OH (5), B(OH)(2) (6), and OTf (7). Using these nominally nucleophilic and electrophilic derivatives as coupling partners in Suzuki-Miyaura, Sonogashira, and Buchwald-Hartwig cross-coupling reactions, we obtained 2,7-bis(R)-pyrenes with R = (4-CO(2)C(8)H(17))C(6)H(4) (8), Ph (9), C≡CPh (10), C≡C[{4-B(Mes)(2)}C(6)H(4)] (11), C≡CTMS (12), C≡C[(4-NMe(2))C(6)H(4)] (14), C≡CH (15), N(Ph)[(4-OMe)C(6)H(4)] (16), and R = OTf, R' = C≡CTMS (13). Lithiation of 4, followed by reaction with CO(2), yielded pyrene-2,7-dicarboxylic acid (17), whilst borylation of 2-tBu-pyrene gave 2-tBu-7-Bpin-pyrene (18) selectively. By similar routes (including Negishi cross-coupling reactions), monosubstituted 2-R-pyrenes with R = BF(3)K (19), Br (20), OH (21), B(OH)(2) (22), [4-B(Mes)(2)]C(6)H(4) (23), B(Mes)(2) (24), OTf (25), C≡CPh (26), C≡CTMS (27), (4-CO(2)Me)C(6)H(4) (28), C≡CH (29), C(3)H(6)CO(2)Me (30), OC(3)H(6)CO(2)Me (31), C(3)H(6)CO(2)H (32), OC(3)H(6)CO(2)H (33), and O(CH(2))(12)Br (34) were obtained from 2. These derivatives are of synthetic and photophysical interest because they contain donor, acceptor, and conjugated substituents. The crystal structures of compounds 4, 5, 7, 12, 18, 19, 21, 23, 26, and 28-31 have also been obtained from single-crystal X-ray diffraction data, revealing a diversity of packing modes, which are described in the Supporting Information. A detailed discussion of the structures of 1 and 2, their polymorphs, solvates, and co-crystals is reported separately.

2.
Chemistry ; 15(43): 11430-42, 2009 Nov 02.
Article in English | MEDLINE | ID: mdl-19821467

ABSTRACT

Retinoid signalling pathways are involved in numerous processes in cells, particularly those mediating differentiation and apoptosis. The endogenous ligands that bind to the retinoid receptors, namely all-trans-retinoic acid (ATRA) and 9-cis-retinoic acid, are prone to double-bond isomerisation and to oxidation by metabolic enzymes, which can have significant and deleterious effects on their activities and selectivities. Many of these problems can be overcome through the use of synthetic retinoids, which are often much more stable, as well as being more active. Modification of their molecular structures can result in retinoids that act as antagonists, rather than agonists, or exhibit a large degree of selectivity for particular retinoid-receptor isotypes. Several such selective retinoids are likely to be of value as pharmaceutical agents with reduced toxicities, particularly in cancer therapy, as reagents for controlling cell differentiation, and as tools for elucidating the precise roles that specific retinoid signalling pathways play within cells.


Subject(s)
Retinoids/chemical synthesis , Binding Sites , Crystallography, X-Ray , Drug Inverse Agonism , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Protein Binding , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptors, Retinoic Acid/antagonists & inhibitors , Receptors, Retinoic Acid/genetics , Receptors, Retinoic Acid/metabolism , Retinoid X Receptors/agonists , Retinoid X Receptors/antagonists & inhibitors , Retinoid X Receptors/metabolism , Retinoids/chemistry , Structure-Activity Relationship
3.
Mol Biosyst ; 5(5): 458-71, 2009 May.
Article in English | MEDLINE | ID: mdl-19381361

ABSTRACT

The natural retinoid, all-trans retinoic acid (ATRA), is widely used to direct the in vitro differentiation of stem cells. However, substantial degradation and isomerisation of ATRA in response to UV-vis light has serious implications with regard to experimental reproducibility and standardisation. We present the novel application of proteomic biomarker profiling technology to stem cell lysates to rapidly compare the differentiation effects of ATRA with those of two stable synthetic retinoid analogues, EC19 and EC23, which have both been shown to induce differentiation in the embryonal carcinoma cell line TERA2.cl.SP12. MALDI-TOF MS (matrix-assisted laser desorption ionisation time-of-flight mass spectrometry) protein profiles support previous findings into the functional relationships between these compounds in the TERA2.cl.SP12 line. Subsequent analysis of protein peak data enabled the semi-quantitative comparison of individual retinoid-responsive proteins. We have used ion exchange chromatographic protein separation to enrich for retinoid-inducible proteins, thereby facilitating their identification from SDS-PAGE gels. The cellular retinoid-responsive proteins CRABP-I, CRABP-II, and CRBP-I were up-regulated in response to ATRA and EC23, indicating a bona fide retinoid pathway response to the synthetic compound. In addition, the actin filament regulatory protein profilin-1 and the microtubule regulator stathmin were also elevated following treatment with both ATRA and EC23. The up-regulation of profilin-1 and stathmin associated with retinoid-induced neural differentiation correlates with their known roles in cytoskeletal reorganisation during axonal development. Immunological analysis via western blotting confirmed the identification of CRABP-I, profilin-1 and stathmin, and supported their observed regulation in response to the retinoid treatments.


Subject(s)
Benzoates/pharmacology , Proteomics/methods , Stem Cells/metabolism , Tetrahydronaphthalenes/pharmacology , Tretinoin/pharmacology , Cell Differentiation , Cells, Cultured , Gene Expression Profiling , Receptors, Retinoic Acid/genetics , Receptors, Retinoic Acid/metabolism , Retinol-Binding Proteins, Cellular/genetics , Retinol-Binding Proteins, Cellular/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Stem Cells/drug effects , Tretinoin/analogs & derivatives
4.
Chemistry ; 15(1): 198-208, 2009.
Article in English | MEDLINE | ID: mdl-19058267

ABSTRACT

Two series of related donor-acceptor conjugated dipolar, pseudo-quadrupolar (V-shaped) and octupolar molecular systems based on the p-dimesitylborylphenylethynylaniline core, namely, 4-(4-dimesitylborylphenylethynyl)-N,N-dimethylaniline, 4-[4-(4-dimesitylborylphenylethynyl)phenylethynyl]-N,N-dimethylaniline, 3,6-bis(4-dimesitylborylphenylethynyl)-N-n-butylcarbazole and tris[4-(4-dimesitylborylphenylethynyl)phenyl]amine, and on the E-p-dimesitylborylethenylaniline motif, namely, E-4-dimesitylborylethenyl-N,N-di(4-tolyl)aniline, 3,6-bis(E-dimesitylborylethenyl)-N-n-butylcarbazole and tris(E-4-dimesitylborylethenylphenyl)amine have been synthesised by palladium-catalyzed cross-coupling and hydroboration routes, respectively. Their absorption and emission maxima, fluorescence lifetimes and quantum yields have been obtained and their two-photon absorption (TPA) spectra and TPA cross-sections have been examined. Of these systems, the octupolar compound tris(E-4-dimesitylborylethenylphenyl)amine has been shown to exhibit the largest TPA cross-section among the two series of approximately 1000 GM at 740 nm. Its TPA performance is comparable to those of other triphenylamine-based octupoles of similar size. The combination of such large TPA cross-sections and high emission quantum yields, up to 0.94, make these systems attractive for applications involving two-photon excited fluorescence (TPEF).

5.
Org Biomol Chem ; 6(19): 3497-507, 2008 Oct 07.
Article in English | MEDLINE | ID: mdl-19082150

ABSTRACT

All-trans-retinoic acid (ATRA) and its associated analogues are important mediators of cell differentiation and function during the development of the nervous system. It is well known that ATRA can induce the differentiation of neural tissues from human pluripotent stem cells. However, it is not always appreciated that ATRA is highly susceptible to isomerisation when in solution, which can influence the effective concentration of ATRA and subsequently its biological activity. To address this source of variability, synthetic retinoid analogues have been designed and synthesised that retain stability during use and maintain biological function in comparison to ATRA. It is also shown that subtle modifications to the structure of the synthetic retinoid compound impacts significantly on biological activity, as when exposed to cultured human pluripotent stem cells, synthetic retinoid 4-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-ylethynyl)benzoic acid, 4a (para-isomer), induces neural differentiation similarly to ATRA. In contrast, stem cells exposed to synthetic retinoid 3-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-ylethynyl)benzoic acid, 4b (meta-isomer), produce very few neurons and large numbers of epithelial-like cells. This type of structure-activity-relationship information for such synthetic retinoid compounds will further the ability to design more targeted systems capable of mediating robust and reproducible tissue differentiation.


Subject(s)
Retinoids/chemical synthesis , Retinoids/pharmacology , Stem Cells/cytology , Stem Cells/drug effects , Animals , Cell Differentiation/drug effects , Cell Line , Drug Design , Embryonic Development , Humans , Light , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/drug effects , Retinoids/chemistry , Tretinoin/chemistry
6.
Acta Crystallogr C ; 62(Pt 6): m229-31, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16763297

ABSTRACT

The title crystal, [Fe(C5H5)2].C12F10, comprises infinite chains of alternating component molecules, linked through face-to-face contacts of nearly parallel cyclopentadienyl and pentafluorophenyl rings. The decafluorobiphenyl molecule has a crystallographic twofold axis and the Fe atom of the ferrocene molecule is on a crystallographic inversion centre, with both cyclopentadienyl rings disordered.

7.
Chemistry ; 12(10): 2758-71, 2006 Mar 20.
Article in English | MEDLINE | ID: mdl-16429474

ABSTRACT

The (p-R-phenyl)dimesitylboranes (R=Me(2)N, MeO, MeS, Br, I), (p-R-phenylethynyl)dimesitylboranes (R=Me(2)N, MeO, MeS, H), (E)-[2-(p-R-phenyl)ethenyl]dimesitylboranes (R=Me(2)N, H(2)N, MeO, MeS, H, CN, NO(2)), (E)-[2-(2-thienyl)ethenyl]dimesitylborane, and (E)-[2-(o-carboranyl)ethenyl]dimesitylborane have been prepared through the reaction of the appropriate p-R-phenyl- and p-R-phenylethynyllithium reagents with dimesitylboron fluoride and by hydroboration of the appropriate p-R-phenylacetylene, 2-ethynylthiophene, and o-ethynylcarborane with dimesitylborane. Their UV/Vis absorption and emission spectra have been recorded in a range of solvents with the fluorescence maxima of the donor-substituted compounds in particular exhibiting large bathochromic shifts in highly polar solvents, indicative of charge transfer leading to large dipole moments in the excited state. The molecular structures of the (p-R-phenyl)dimesitylboranes (R=Me(2)N, MeO, MeS, Br, I), the (E)-[2-(p-R-phenyl)ethenyl]dimesitylboranes (R=Me(2)N, H(2)N MeO, MeS, H), (p-R-phenylethynyl)dimesitylborane (R=Me(2)N), and (E)-[2-(2-thienyl)ethenyl]dimesitylborane, which have been determined from single-crystal X-ray diffraction measurements, offer evidence of increased conjugation in the ground state with increased donor strength of the R substituent. Their first- and second-order molecular hyperpolarizabilities have been obtained from EFISH and THG measurements, the first-order hyperpolarizabilities being largest for the strongest R-substituent donors. AM1 calculations have been performed on these compounds, showing reasonable agreement with the experimentally obtained bond lengths and hyperpolarizabilities, as well as on several related hypothetical compounds containing multiple C==C bonds, most of which are proposed to have even larger hyperpolarizabilities.

8.
Chem Commun (Camb) ; (21): 2666-8, 2005 Jun 07.
Article in English | MEDLINE | ID: mdl-15917913

ABSTRACT

Donor-acceptor phenylene ethynylene systems containing the 6-methylpyran-2-one group, synthesized via classic or microwave-assisted Sonogashira cross-coupling, exhibit pronounced solvatochromism in fluorescence suggesting a highly polar excited state; 4-[4-(4-N,N-dihexylaminophenylethynyl)phenylethynyl]-6-methylpyran-2-one has a fluorescence quantum yield >0.9 in cyclohexane.


Subject(s)
Alkynes/chemistry , Ethers/chemistry , Pyrones/chemical synthesis , Models, Molecular , Molecular Structure , Optical Rotation , Oxidation-Reduction , Pyrones/chemistry
9.
J Org Chem ; 70(2): 703-6, 2005 Jan 21.
Article in English | MEDLINE | ID: mdl-15651824

ABSTRACT

Palladium-catalyzed terminal alkyne dimerization, through oxidative homocoupling, is a useful approach to the synthesis of symmetrical 1,4-diynes. Recent investigations have suggested that this reaction might be accomplished in the absence of intentionally added stoichiometric oxidants (to reoxidize Pd(0) to Pd(II)). In this paper, we have fully addressed the question of whether oxygen (or added oxidant) is required to facilitate this process. The presence of a stoichiometric quantity of air (or added oxidant such as I2) is essential for alkyne dimerization. Excess PPh3 inhibits alkyne dimerization to enyne, which only occurs to a significant extent when the reaction is starved of oxidant. Theoretical studies shed more light on the requirement for an oxidant in the homocoupling reaction in order for the process to be theromodynamically favorable. The employment of I2 as the stoichiometric oxidant appears to be the method of choice. The dual role of Cu both in transmetalation of alkynyl units to Pd(II) and in assisting reoxidation of Pd(0) to Pd(II) is suggested.

10.
Org Biomol Chem ; 2(21): 3172-8, 2004 Nov 07.
Article in English | MEDLINE | ID: mdl-15505725

ABSTRACT

A series of halogenated, partially fluorinated tolans of general formula p-X-C6H4-C[triple bond]C-C6F5[X=I (1), Br (2), Cl (3), F (4)] and p-X-C6F4-C[triple bond]C-C6H5[X=I (5), Br (6)] have been prepared via palladium-catalysed Sonogashira cross-coupling, or for X=Cl (7), by nucleophilic aromatic substitution reactions. The single-crystal X-ray structures of 1-3 and 5-6 have been determined. The structures reveal that the molecular packing is characterized by either arene-perfluoroarene interactions (3), or halogen-halogen interactions (isomorphous 1 and 2), or neither (isomorphous 5 and 6). The structure of represents the first fully determined crystal structure of a compound that contains a halogen atom other than fluorine, in which arene-perfluoroarene interactions are present.

SELECTION OF CITATIONS
SEARCH DETAIL
...