Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Stem Cells Transl Med ; 12(6): 365-378, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37221451

ABSTRACT

Prior to use, newly generated induced pluripotent stem cells (iPSC) should be thoroughly validated. While excellent validation and release testing assays designed to evaluate potency, genetic integrity, and sterility exist, they do not have the ability to predict cell type-specific differentiation capacity. Selection of iPSC lines that have limited capacity to produce high-quality transplantable cells, places significant strain on valuable clinical manufacturing resources. The purpose of this study was to determine the degree and root cause of variability in retinal differentiation capacity between cGMP-derived patient iPSC lines. In turn, our goal was to develop a release testing assay that could be used to augment the widely used ScoreCard panel. IPSCs were generated from 15 patients (14-76 years old), differentiated into retinal organoids, and scored based on their retinal differentiation capacity. Despite significant differences in retinal differentiation propensity, RNA-sequencing revealed remarkable similarity between patient-derived iPSC lines prior to differentiation. At 7 days of differentiation, significant differences in gene expression could be detected. Ingenuity pathway analysis revealed perturbations in pathways associated with pluripotency and early cell fate commitment. For example, good and poor producers had noticeably different expressions of OCT4 and SOX2 effector genes. QPCR assays targeting genes identified via RNA sequencing were developed and validated in a masked fashion using iPSCs from 8 independent patients. A subset of 14 genes, which include the retinal cell fate markers RAX, LHX2, VSX2, and SIX6 (all elevated in the good producers), were found to be predictive of retinal differentiation propensity.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Adolescent , Young Adult , Adult , Middle Aged , Aged , Cell Differentiation , Retina , Organoids
2.
Front Genome Ed ; 3: 670529, 2021.
Article in English | MEDLINE | ID: mdl-34713259

ABSTRACT

Recent advances in the development of CRISPR-Cas genome editing technologies have made it possible to perform targeted mutagenesis and precise gene replacement in crop plants. CRISPR-Cas9 and CRISPR-Cas12a are two main types of widely used genome editing systems. However, when CRISPR-Cas12a editing machinery is expressed from a transgene, some chromosomal targets encountered low editing frequency in important crops like maize and soybean. Here, we report efficient methods to directly generate genome edited lines by delivering Cas12a-gRNA ribonucleoprotein complex (RNP) to immature maize embryos through particle bombardment in an elite maize variety. Genome edited lines were obtained at ~7% frequency without any selection during regeneration via biolistic delivery of Cas12a RNP into immature embryos. Strikingly, the gene editing rate was increased to 60% on average and up to 100% in some experiments when the Cas12a RNP was co-delivered with a PMI selectable marker gene cassette and the induced callus cultures were selected with mannose. We also show that use of higher activity Cas12a mutants resulted in improved editing efficiency in more recalcitrant target sequence. The advances described here provide useful tools for genetic improvement of maize.

4.
Nat Commun ; 12(1): 3908, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34162850

ABSTRACT

Though AsCas12a fills a crucial gap in the current genome editing toolbox, it exhibits relatively poor editing efficiency, restricting its overall utility. Here we isolate an engineered variant, "AsCas12a Ultra", that increased editing efficiency to nearly 100% at all sites examined in HSPCs, iPSCs, T cells, and NK cells. We show that AsCas12a Ultra maintains high on-target specificity thereby mitigating the risk for off-target editing and making it ideal for complex therapeutic genome editing applications. We achieved simultaneous targeting of three clinically relevant genes in T cells at >90% efficiency and demonstrated transgene knock-in efficiencies of up to 60%. We demonstrate site-specific knock-in of a CAR in NK cells, which afforded enhanced anti-tumor NK cell recognition, potentially enabling the next generation of allogeneic cell-based therapies in oncology. AsCas12a Ultra is an advanced CRISPR nuclease with significant advantages in basic research and in the production of gene edited cell medicines.


Subject(s)
Acidaminococcus/enzymology , Bacterial Proteins/metabolism , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , Endonucleases/metabolism , Gene Editing/methods , Acidaminococcus/genetics , Bacterial Proteins/genetics , CRISPR-Associated Proteins/genetics , Cells, Cultured , Endonucleases/genetics , HEK293 Cells , Hematopoietic Stem Cells/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Jurkat Cells , Killer Cells, Natural/metabolism , Reproducibility of Results , T-Lymphocytes/metabolism
5.
Nat Med ; 27(4): 677-687, 2021 04.
Article in English | MEDLINE | ID: mdl-33737751

ABSTRACT

ß-Thalassemia pathology is due not only to loss of ß-globin (HBB), but also to erythrotoxic accumulation and aggregation of the ß-globin-binding partner, α-globin (HBA1/2). Here we describe a Cas9/AAV6-mediated genome editing strategy that can replace the entire HBA1 gene with a full-length HBB transgene in ß-thalassemia-derived hematopoietic stem and progenitor cells (HSPCs), which is sufficient to normalize ß-globin:α-globin messenger RNA and protein ratios and restore functional adult hemoglobin tetramers in patient-derived red blood cells. Edited HSPCs were capable of long-term and bilineage hematopoietic reconstitution in mice, establishing proof of concept for replacement of HBA1 with HBB as a novel therapeutic strategy for curing ß-thalassemia.


Subject(s)
Genetic Therapy , Hematopoietic Stem Cells/metabolism , Hemoglobins/metabolism , alpha-Globins/genetics , beta-Globins/genetics , beta-Thalassemia/genetics , beta-Thalassemia/therapy , Anemia, Sickle Cell/pathology , Animals , Antigens, CD34/metabolism , Dependovirus/genetics , Erythrocytes/metabolism , Gene Editing , Genes, Reporter , Genetic Loci , Hematopoietic Stem Cell Transplantation , Humans , Mice , Promoter Regions, Genetic/genetics , RNA, Guide, Kinetoplastida/genetics
6.
Front Genome Ed ; 3: 760820, 2021.
Article in English | MEDLINE | ID: mdl-35098208

ABSTRACT

Delivery of genome editing reagents using CRISPR-Cas ribonucleoproteins (RNPs) transfection offers several advantages over plasmid DNA-based delivery methods, including reduced off-target editing effects, mitigation of random integration of non-native DNA fragments, independence of vector constructions, and less regulatory restrictions. Compared to the use in animal systems, RNP-mediated genome editing is still at the early development stage in plants. In this study, we established an efficient and simplified protoplast-based genome editing platform for CRISPR-Cas RNP delivery, and then evaluated the efficiency, specificity, and temperature sensitivity of six Cas9 and Cas12a proteins. Our results demonstrated that Cas9 and Cas12a RNP delivery resulted in genome editing frequencies (8.7-41.2%) at various temperature conditions, 22°C, 26°C, and 37°C, with no significant temperature sensitivity. LbCas12a often exhibited the highest activities, while AsCas12a demonstrated higher sequence specificity. The high activities of CRISPR-Cas RNPs at 22° and 26°C, the temperature preferred by plant transformation and tissue culture, led to high mutagenesis efficiencies (34.0-85.2%) in the protoplast-regenerated calli and plants with the heritable mutants recovered in the next generation. This RNP delivery approach was further extended to pennycress (Thlaspi arvense), soybean (Glycine max) and Setaria viridis with up to 70.2% mutagenesis frequency. Together, this study sheds light on the choice of RNP reagents to achieve efficient transgene-free genome editing in plants.

7.
Nat Med ; 25(2): 249-254, 2019 02.
Article in English | MEDLINE | ID: mdl-30692695

ABSTRACT

The CRISPR-Cas9 system is a powerful tool for genome editing, which allows the precise modification of specific DNA sequences. Many efforts are underway to use the CRISPR-Cas9 system to therapeutically correct human genetic diseases1-6. The most widely used orthologs of Cas9 are derived from Staphylococcus aureus and Streptococcus pyogenes5,7. Given that these two bacterial species infect the human population at high frequencies8,9, we hypothesized that humans may harbor preexisting adaptive immune responses to the Cas9 orthologs derived from these bacterial species, SaCas9 (S. aureus) and SpCas9 (S. pyogenes). By probing human serum for the presence of anti-Cas9 antibodies using an enzyme-linked immunosorbent assay, we detected antibodies against both SaCas9 and SpCas9 in 78% and 58% of donors, respectively. We also found anti-SaCas9 T cells in 78% and anti-SpCas9 T cells in 67% of donors, which demonstrates a high prevalence of antigen-specific T cells against both orthologs. We confirmed that these T cells were Cas9-specific by demonstrating a Cas9-specific cytokine response following isolation, expansion, and antigen restimulation. Together, these data demonstrate that there are preexisting humoral and cell-mediated adaptive immune responses to Cas9 in humans, a finding that should be taken into account as the CRISPR-Cas9 system moves toward clinical trials.


Subject(s)
Adaptive Immunity , CRISPR-Associated Protein 9/metabolism , Adult , Cell Separation , Female , Humans , Immunity, Humoral , Male , T-Lymphocytes/immunology
8.
Nat Med ; 24(8): 1216-1224, 2018 08.
Article in English | MEDLINE | ID: mdl-30082871

ABSTRACT

Translation of the CRISPR-Cas9 system to human therapeutics holds high promise. However, specificity remains a concern especially when modifying stem cell populations. We show that existing rationally engineered Cas9 high-fidelity variants have reduced on-target activity when using the therapeutically relevant ribonucleoprotein (RNP) delivery method. Therefore, we devised an unbiased bacterial screen to isolate variants that retain activity in the RNP format. Introduction of a single point mutation, p.R691A, in Cas9 (high-fidelity (HiFi) Cas9) retained the high on-target activity of Cas9 while reducing off-target editing. HiFi Cas9 induces robust AAV6-mediated gene targeting at five therapeutically relevant loci (HBB, IL2RG, CCR5, HEXB, and TRAC) in human CD34+ hematopoietic stem and progenitor cells (HSPCs) as well as primary T cells. We also show that HiFi Cas9 mediates high-level correction of the sickle cell disease (SCD)-causing p.E6V mutation in HSPCs derived from patients with SCD. We anticipate that HiFi Cas9 will have wide utility for both basic science and therapeutic genome-editing applications.


Subject(s)
CRISPR-Associated Protein 9/genetics , Gene Editing , Hematopoietic Stem Cells/metabolism , Mutation/genetics , Ribonucleoproteins/metabolism , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/therapy , Antigens, CD34/metabolism , Base Sequence , Escherichia coli , HEK293 Cells , Humans
9.
Methods ; 121-122: 16-28, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28351759

ABSTRACT

Genome editing using the CRISPR/Cas9 system requires the presence of guide RNAs bound to the Cas9 endonuclease as a ribonucleoprotein (RNP) complex in cells, which cleaves the host cell genome at sites specified by the guide RNAs. New genetic material may be introduced during repair of the double-stranded break via homology dependent repair (HDR) if suitable DNA templates are delivered with the CRISPR components. Early methods used plasmid or viral vectors to make these components in the host cell, however newer approaches using recombinant Cas9 protein with synthetic guide RNAs introduced directly as an RNP complex into cells shows faster onset of action with fewer off-target effects. This approach also enables use of chemically modified synthetic guide RNAs that have improved nuclease stability and reduces the risk of triggering an innate immune response in the host cell. This article provides detailed methods for genome editing using the RNP approach with synthetic guide RNAs using lipofection or electroporation in mammalian cells or using microinjection in murine zygotes, with or without addition of a single-stranded HDR template DNA.


Subject(s)
Bacterial Proteins/genetics , CRISPR-Cas Systems , Endonucleases/genetics , Gene Editing/methods , Gene Transfer Techniques , RNA, Guide, Kinetoplastida/genetics , Ribonucleoproteins/genetics , Animals , Bacterial Proteins/metabolism , Base Sequence , CRISPR-Associated Protein 9 , Clustered Regularly Interspaced Short Palindromic Repeats , DNA/genetics , DNA/metabolism , Electroporation , Endonucleases/metabolism , Gene Targeting/methods , Genome , HEK293 Cells , Humans , Jurkat Cells , Lipids/chemistry , Mice , Microinjections , RNA, Guide, Kinetoplastida/chemical synthesis , RNA, Guide, Kinetoplastida/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinational DNA Repair , Ribonucleoproteins/metabolism , Zygote/cytology , Zygote/metabolism
10.
Mol Ther ; 22(1): 92-101, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24089139

ABSTRACT

Despite progress in identifying molecular drivers of cancer, it has been difficult to translate this knowledge into new therapies, because many of the causal proteins cannot be inhibited by conventional small molecule therapeutics. RNA interference (RNAi), which uses small RNAs to inhibit gene expression, provides a promising alternative to reach traditionally undruggable protein targets by shutting off their expression at the messenger RNA (mRNA) level. Challenges for realizing the potential of RNAi have included identifying the appropriate genes to target and achieving sufficient knockdown in tumors. We have developed high-potency Dicer-substrate short-interfering RNAs (DsiRNAs) targeting ß-catenin and delivered these in vivo using lipid nanoparticles, resulting in significant reduction of ß-catenin expression in liver cancer models. Reduction of ß-catenin strongly reduced tumor burden, alone or in combination with sorafenib and as effectively as DsiRNAs that target mitotic genes such as PLK1 and KIF11. ß-catenin knockdown also strongly reduced the expression of ß-catenin-regulated genes, including MYC, providing a potential mechanism for tumor inhibition. These results validate ß-catenin as a target for liver cancer therapy and demonstrate the promise of RNAi in general and DsiRNAs in particular for reaching traditionally undruggable cancer targets.


Subject(s)
Liver Neoplasms/genetics , Liver Neoplasms/pathology , RNA, Small Interfering/genetics , beta Catenin/genetics , Animals , Cell Line, Tumor , Disease Models, Animal , Gene Expression , Gene Knockdown Techniques , Humans , Liver Neoplasms/immunology , Liver Neoplasms/therapy , Male , Mice , Nanoparticles/administration & dosage , Nanoparticles/chemistry , RNA Interference , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism , Ribonuclease III/metabolism , Tumor Burden/genetics , Xenograft Model Antitumor Assays , beta Catenin/metabolism
11.
Nucleic Acids Res ; 36(20): 6511-22, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18927112

ABSTRACT

In humans a single species of the RNAseIII enzyme Dicer processes both microRNA precursors into miRNAs and long double-stranded RNAs into small interfering RNAs (siRNAs). An interesting but poorly understood domain of the mammalian Dicer protein is the N-terminal helicase-like domain that possesses a signature DExH motif. Cummins et al. created a human Dicer mutant cell line by inserting an AAV targeting cassette into the helicase domain of both Dicer alleles in HCT116 cells generating an in-frame 43-amino-acid insertion immediately adjacent to the DExH box. This insertion creates a Dicer mutant protein with defects in the processing of most, but not all, endogenous pre-miRNAs into mature miRNA. Using both biochemical and computational approaches, we provide evidence that the Dicer helicase mutant is sensitive to the thermodynamic properties of the stems in microRNAs and short-hairpin RNAs, with thermodynamically unstable stems resulting in poor processing and a reduction in the levels of functional mi/siRNAs. Paradoxically, this mutant exhibits enhanced processing efficiency and concomitant RNA interference when thermodynamically stable, long-hairpin RNAs are used. These results suggest an important function for the Dicer helicase domain in the processing of thermodynamically unstable hairpin structures.


Subject(s)
MicroRNAs/chemistry , MicroRNAs/metabolism , RNA Helicases/chemistry , RNA, Untranslated/chemistry , RNA, Untranslated/metabolism , Ribonuclease III/chemistry , Cell Line , Humans , Mutation , Protein Structure, Tertiary , RNA Helicases/genetics , RNA Helicases/metabolism , RNA Precursors/chemistry , RNA Precursors/metabolism , RNA Processing, Post-Transcriptional , Ribonuclease III/genetics , Ribonuclease III/metabolism , Thermodynamics
12.
Oligonucleotides ; 18(2): 187-200, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18637735

ABSTRACT

Dicer-substrate small interfering RNAs (DsiRNAs) are synthetic RNA duplexes that are processed by Dicer into 21-mer species and show improved potency as triggers of RNA interference, particularly when used at low dose. Chemical modification patterns that are compatible with high potency 21-mer small interfering RNAs have been reported by several groups. However, modification patterns have not been studied for Dicer-substrate duplexes. We therefore synthesized a series of chemically modified 27-mer DsiRNAs and correlated modification patterns with functional potency. Some modification patterns profoundly reduced function although other patterns maintained high potency. Effects of sequence context were observed, where the relative potency of modification patterns varied between sites. A modification pattern involving alternating 2'-O-methyl RNA bases was developed that generally retains high potency when tested in different sites in different genes, evades activation of the innate immune system, and improves stability in serum.


Subject(s)
DEAD-box RNA Helicases/metabolism , Endoribonucleases/metabolism , RNA, Small Interfering/genetics , Base Sequence , Cells, Cultured , DEAD-box RNA Helicases/analysis , Endoribonucleases/analysis , Genes, Reporter , Genetic Vectors , Green Fluorescent Proteins/genetics , HCT116 Cells , HeLa Cells , Humans , Interferon-alpha/analysis , Interferon-alpha/metabolism , Kinetics , Leukocytes, Mononuclear/metabolism , Luciferases, Renilla/metabolism , Molecular Sequence Data , Plasmids , RNA/genetics , RNA Interference , RNA, Double-Stranded/genetics , RNA, Small Interfering/chemical synthesis , RNA, Small Interfering/chemistry , Reference Standards , Ribonuclease III , Sensitivity and Specificity , Substrate Specificity , Transfection
13.
Mol Ther ; 16(7): 1331-9, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18523447

ABSTRACT

RNA interference (RNAi) is gaining acceptance as a potential therapeutic strategy against peripheral disease, and several clinical trials are already underway with 21-mer small-interfering RNA (siRNA) as the active pharmaceutical agent. However, for central affliction like pain, such innovating therapies are limited but nevertheless crucial to improve pain research and management. We demonstrate here the proof-of-concept of the use of 27-mer Dicer-substrate siRNA (DsiRNA) for silencing targets related to CNS disorders such as pain states. Indeed, low dose DsiRNA (0.005 mg/kg) was highly efficient in reducing the expression of the neurotensin receptor-2 (NTS2, a G-protein-coupled receptor (GPCR) involved in ascending nociception) in rat spinal cord through intrathecal (IT) administration formulated with the cationic lipid i-Fect. Along with specific decrease in NTS2 mRNA and protein, our results show a significant alteration in the analgesic effect of a selective-NTS2 agonist, reaching 93% inhibition up to 3-4 days after administration of DsiRNA. In order to ensure that these findings were not biased by unsuspected off-target effects (OTEs), we also demonstrated that treatment with a second NTS2-specific DsiRNA also reversed NTS2-induced antinociception, and that NTS2-specific 27-mer duplexes did not alter signaling through NTS1, a closely related receptor. Altogether, DsiRNAi represents a potent tool for dissecting nociceptive pathways and could further lead to a new class of central active drugs.


Subject(s)
Pain/drug therapy , RNA Interference , RNA, Small Interfering/therapeutic use , Receptors, Neurotensin/antagonists & inhibitors , Ribonuclease III/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , Ganglia, Spinal/metabolism , Male , Oligonucleotides/administration & dosage , Oligonucleotides/therapeutic use , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/metabolism , Rats , Rats, Sprague-Dawley
14.
Nucleic Acids Res ; 33(13): 4140-56, 2005.
Article in English | MEDLINE | ID: mdl-16049023

ABSTRACT

Synthetic RNA duplexes that are substrates for Dicer are potent triggers of RNA interference (RNAi). Blunt 27mer duplexes can be up to 100-fold more potent than traditional 21mer duplexes. Not all 27mer duplexes show increased potency. Evaluation of the products of in vitro dicing reactions using electrospray ionization mass spectrometry reveals that a variety of products can be produced by Dicer cleavage. Use of asymmetric duplexes having a single 2-base 3'-overhang restricts the heterogeneity that results from dicing. Inclusion of DNA residues at the ends of blunt duplexes also limits heterogeneity. Combination of asymmetric 2-base 3'-overhang with 3'-DNA residues on the blunt end result in a duplex form which directs dicing to predictably yield a single primary cleavage product. It is therefore possible to design a 27mer duplex which is processed by Dicer to yield a specific, desired 21mer species. Using this strategy, two different 27mers can be designed that result in the same 21mer after dicing, one where the 3'-overhang resides on the antisense (AS) strand and dicing proceeds to the 'right' ('R') and one where the 3'-overhang resides on the sense (S) strand and dicing proceeds to the 'left' ('L'). Interestingly, the 'R' version of the asymmetric 27mer is generally more potent in reducing target gene levels than the 'L' version 27mer. Strand targeting experiments show asymmetric strand utilization between the two different 27mer forms, with the 'R' form favoring S strand and the 'L' form favoring AS strand silencing. Thus, Dicer processing confers functional polarity within the RNAi pathway.


Subject(s)
RNA Interference , RNA, Double-Stranded/metabolism , RNA, Small Interfering/metabolism , Ribonuclease III/metabolism , Cell Line , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , RNA, Double-Stranded/chemistry , RNA, Small Interfering/chemistry , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...