Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(5): eadj6315, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38295162

ABSTRACT

Traditional single-point measurements fail to capture dynamic chemical responses of plants, which are complex, nonequilibrium biological systems. We report TETRIS (time-resolved electrochemical technology for plant root environment in situ chemical sensing), a real-time chemical phenotyping system for continuously monitoring chemical signals in the often-neglected plant root environment. TETRIS consisted of low-cost, highly scalable screen-printed electrochemical sensors for monitoring concentrations of salt, pH, and H2O2 in the root environment of whole plants, where multiplexing allowed for parallel sensing operation. TETRIS was used to measure ion uptake in tomato, kale, and rice and detected differences between nutrient and heavy metal ion uptake. Modulation of ion uptake with ion channel blocker LaCl3 was monitored by TETRIS and machine learning used to predict ion uptake. TETRIS has the potential to overcome the urgent "bottleneck" in high-throughput screening in producing high-yielding plant varieties with improved resistance against stress.


Subject(s)
Hydrogen Peroxide , Metals , Plants , Machine Learning , Plant Roots
2.
Nat Food ; 2(12): 981-989, 2021 12.
Article in English | MEDLINE | ID: mdl-37118248

ABSTRACT

Overfertilization with nitrogen fertilizers has damaged the environment and health of soil, but standard laboratory testing of soil to determine the levels of nitrogen (mainly NH4+ and NO3-) is not performed regularly. Here we demonstrate that point-of-use measurements of NH4+, combined with soil conductivity, pH, easily accessible weather and timing data, allow instantaneous prediction of levels of NO3- in soil (R2 = 0.70) using a machine learning model. A long short-term memory recurrent neural network model can also be used to predict levels of NH4+ and NO3- up to 12 days into the future from a single measurement at day one, with [Formula: see text] and [Formula: see text], for unseen weather conditions. Our machine-learning-based approach eliminates the need for dedicated instruments to determine the levels of NO3- in soil. Nitrogenous soil nutrients can be determined and predicted with enough accuracy to forecast the impact of climate on fertilization planning and to tune timing for crop requirements, reducing overfertilization while improving crop yields.

SELECTION OF CITATIONS
SEARCH DETAIL
...