Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 11(23): e2400225, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38531063

ABSTRACT

Accurate quantification of hypersensitive response (HR) programmed cell death is imperative for understanding plant defense mechanisms and developing disease-resistant crop varieties. Here, a phenotyping platform for rapid, continuous-time, and quantitative assessment of HR is demonstrated: Parallel Automated Spectroscopy Tool for Electrolyte Leakage (PASTEL). Compared to traditional HR assays, PASTEL significantly improves temporal resolution and has high sensitivity, facilitating detection of microscopic levels of cell death. Validation is performed by transiently expressing the effector protein AVRblb2 in transgenic Nicotiana benthamiana (expressing the corresponding resistance protein Rpi-blb2) to reliably induce HR. Detection of cell death is achieved at microscopic intensities, where leaf tissue appears healthy to the naked eye one week after infiltration. PASTEL produces large amounts of frequency domain impedance data captured continuously. This data is used to develop supervised machine-learning (ML) models for classification of HR. Input data (inclusive of the entire tested concentration range) is classified as HR-positive or negative with 84.1% mean accuracy (F1 score = 0.75) at 1 h and with 87.8% mean accuracy (F1 score = 0.81) at 22 h. With PASTEL and the ML models produced in this work, it is possible to phenotype disease resistance in plants in hours instead of days to weeks.


Subject(s)
Nicotiana , Nicotiana/genetics , Plant Leaves/metabolism , Plant Leaves/genetics , Plants, Genetically Modified/genetics , Apoptosis/physiology , Apoptosis/genetics , Plant Diseases/genetics , Cell Death
2.
Nat Rev Chem ; 7(1): 7-25, 2023 01.
Article in English | MEDLINE | ID: mdl-37117825

ABSTRACT

Time is an often-neglected variable in biological research. Plants respond to biotic and abiotic stressors with a range of chemical signals, but as plants are non-equilibrium systems, single-point measurements often cannot provide sufficient temporal resolution to capture these time-dependent signals. In this article, we critically review the advances in continuous monitoring of chemical signals in living plants under stress. We discuss methods for sustained measurement of the most important chemical species, including ions, organic molecules, inorganic molecules and radicals. We examine analytical and modelling approaches currently used to identify and predict stress in plants. We also explore how the methods discussed can be used for applications beyond a research laboratory, in agricultural settings. Finally, we present the current challenges and future perspectives for the continuous monitoring of chemical signals in plants.


Subject(s)
Agriculture , Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...