Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Epigenomics ; 15(6): 351-367, 2023 03.
Article in English | MEDLINE | ID: mdl-37249002

ABSTRACT

Accurate diagnosis for patients living with neurodevelopmental disorders is often met with numerous challenges, related to the ambiguity of findings and lack of specificity in genetic variants leading to pathology. Genome-wide DNA methylation analysis has been used to develop highly sensitive and specific 'episignatures' as biomarkers capable of differentiating and classifying complex neurodevelopmental disorders. In this study we describe distinct episignatures for KAT6A syndrome, caused by pathogenic variants in the lysine acetyltransferase A gene (KAT6A), and for the two neurodevelopmental disorders associated with lysine acetyl transferase B (KAT6B). We demonstrate the ability of our models to differentiate between highly overlapping episignatures, increasing the ability to effectively identify and diagnose these conditions.


Subject(s)
DNA Methylation , Neurodevelopmental Disorders , Humans , Neurodevelopmental Disorders/genetics , Biomarkers , Histone Acetyltransferases/genetics
2.
Brain ; 146(8): 3273-3288, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36757831

ABSTRACT

In the field of rare diseases, progress in molecular diagnostics led to the recognition that variants linked to autosomal-dominant neurodegenerative diseases of later onset can, in the context of biallelic inheritance, cause devastating neurodevelopmental disorders and infantile or childhood-onset neurodegeneration. TOR1A-associated arthrogryposis multiplex congenita 5 (AMC5) is a rare neurodevelopmental disorder arising from biallelic variants in TOR1A, a gene that in the heterozygous state is associated with torsion dystonia-1 (DYT1 or DYT-TOR1A), an early-onset dystonia with reduced penetrance. While 15 individuals with AMC5-TOR1A have been reported (less than 10 in detail), a systematic investigation of the full disease-associated spectrum has not been conducted. Here, we assess the clinical, radiological and molecular characteristics of 57 individuals from 40 families with biallelic variants in TOR1A. Median age at last follow-up was 3 years (0-24 years). Most individuals presented with severe congenital flexion contractures (95%) and variable developmental delay (79%). Motor symptoms were reported in 79% and included lower limb spasticity and pyramidal signs, as well as gait disturbances. Facial dysmorphism was an integral part of the phenotype, with key features being a broad/full nasal tip, narrowing of the forehead and full cheeks. Analysis of disease-associated manifestations delineated a phenotypic spectrum ranging from normal cognition and mild gait disturbance to congenital arthrogryposis, global developmental delay, intellectual disability, absent speech and inability to walk. In a subset, the presentation was consistent with foetal akinesia deformation sequence with severe intrauterine abnormalities. Survival was 71%, with higher mortality in males. Death occurred at a median age of 1.2 months (1 week-9 years), due to respiratory failure, cardiac arrest or sepsis. Analysis of brain MRI studies identified non-specific neuroimaging features, including a hypoplastic corpus callosum (72%), foci of signal abnormality in the subcortical and periventricular white matter (55%), diffuse white matter volume loss (45%), mega cisterna magna (36%) and arachnoid cysts (27%). The molecular spectrum included 22 distinct variants, defining a mutational hotspot in the C-terminal domain of the Torsin-1A protein. Genotype-phenotype analysis revealed an association of missense variants in the 3-helix bundle domain to an attenuated phenotype, while missense variants near the Walker A/B motif as well as biallelic truncating variants were linked to early death. In summary, this systematic cross-sectional analysis of a large cohort of individuals with biallelic TOR1A variants across a wide age-range delineates the clinical and genetic spectrum of TOR1A-related autosomal-recessive disease and highlights potential predictors for disease severity and survival.


Subject(s)
Dystonia , Dystonic Disorders , Nervous System Malformations , Male , Humans , Cross-Sectional Studies , Mutation/genetics , Phenotype , Dystonia/genetics , Dystonic Disorders/genetics , Molecular Chaperones/genetics
3.
Am J Med Genet A ; 188(6): 1761-1776, 2022 06.
Article in English | MEDLINE | ID: mdl-35224842

ABSTRACT

Orthostatic intolerance (OI) is frequently reported in young women with generalized hypermobility spectrum disorder (G-HSD) and hypermobile EDS (hEDS). However, it remains currently unclear whether OI is a comorbidity or fundamental part of the pathophysiology of G-HSD or hEDS. This study investigated the prevalence and impact of OI in young women across the hypermobility spectrum. Forty-five women (14-30 years, 15 controls, 15 G-HSD, and 15 hEDS) undertook a head-up tilt (HUT) and active stand test. Postural Orthostatic Tachycardia Syndrome (POTS) and Orthostatic Hypotension (OH) were assessed using age-related criteria. Autonomic dysfunction and quality-of-life questionnaires were also completed. The prevalence of POTS was higher in women with G-HSD than hEDS and control groups during HUT (43% vs. 7% and 7%, respectively, p < 0.05), but similar between groups during the active stand (47%, 27%, and 13% for G-HSD, hEDS, and control, respectively). No participants had OH. hEDS and G-HSD participants reported more severe orthostatic symptoms and poorer quality of life than controls. Although POTS was observed in hypermobile participants, there is no conclusive evidence that its prevalence differed between groups due to differences between the HUT and active stand assessments. Nevertheless, OI and broader autonomic dysfunction impacted on their quality of life.


Subject(s)
Ehlers-Danlos Syndrome , Joint Instability , Orthostatic Intolerance , Postural Orthostatic Tachycardia Syndrome , Ehlers-Danlos Syndrome/diagnosis , Female , Humans , Joint Instability/complications , Joint Instability/diagnosis , Joint Instability/epidemiology , Orthostatic Intolerance/epidemiology , Postural Orthostatic Tachycardia Syndrome/diagnosis , Postural Orthostatic Tachycardia Syndrome/epidemiology , Prevalence , Quality of Life
4.
Eur J Hum Genet ; 30(6): 645-652, 2022 06.
Article in English | MEDLINE | ID: mdl-35046503

ABSTRACT

Place plays a significant role in our health. As genetic/genomic services evolve and are increasingly seen as mainstream, especially within the field of rare disease, it is important to ensure that where one lives does not impede access to genetic/genomic services. Our aim was to identify barriers and enablers of geographical equity in accessing clinical genomic or genetic services. We undertook a systematic review searching for articles relating to geographical access to genetic/genomic services for rare disease. Searching the databases Medline, EMBASE and PubMed returned 1803 papers. Screening led to the inclusion of 20 articles for data extraction. Using inductive thematic analysis, we identified four themes (i) Current service model design, (ii) Logistical issues facing clinicians and communities, (iii) Workforce capacity and capability and iv) Rural culture and consumer beliefs. Several themes were common to both rural and urban communities. However, many themes were exacerbated for rural populations due to a lack of clinician access to/relationships with genetic specialist staff, the need to provide more generalist services and a lack of genetic/genomic knowledge and skill. Additional barriers included long standing systemic service designs that are not fit for purpose due to historically ad hoc approaches to delivery of care. There were calls for needs assessments to clarify community needs. Enablers of geographically equitable care included the uptake of new innovative models of care and a call to raise both community and clinician knowledge and awareness to demystify the clinical offer from genetics/genomics services.


Subject(s)
Genetic Services , Rare Diseases , Genomics , Geography , Health Services Accessibility , Humans , Rare Diseases/genetics , Rare Diseases/therapy , Rural Population
5.
J Med Genet ; 58(9): 609-618, 2021 09.
Article in English | MEDLINE | ID: mdl-33060286

ABSTRACT

BACKGROUND: Fetal akinesia and arthrogryposis are clinically and genetically heterogeneous and have traditionally been refractive to genetic diagnosis. The widespread availability of affordable genome-wide sequencing has facilitated accurate genetic diagnosis and gene discovery in these conditions. METHODS: We performed next generation sequencing (NGS) in 190 probands with a diagnosis of arthrogryposis multiplex congenita, distal arthrogryposis, fetal akinesia deformation sequence or multiple pterygium syndrome. This sequencing was a combination of bespoke neurogenetic disease gene panels and whole exome sequencing. Only class 4 and 5 variants were reported, except for two cases where the identified variants of unknown significance (VUS) are most likely to be causative for the observed phenotype. Co-segregation studies and confirmation of variants identified by NGS were performed where possible. Functional genomics was performed as required. RESULTS: Of the 190 probands, 81 received an accurate genetic diagnosis. All except two of these cases harboured class 4 and/or 5 variants based on the American College of Medical Genetics and Genomics guidelines. We identified phenotypic expansions associated with CACNA1S, CHRNB1, GMPPB and STAC3. We describe a total of 50 novel variants, including a novel missense variant in the recently identified gene for arthrogryposis with brain malformations-SMPD4. CONCLUSIONS: Comprehensive gene panels give a diagnosis for a substantial proportion (42%) of fetal akinesia and arthrogryposis cases, even in an unselected cohort. Recently identified genes account for a relatively large proportion, 32%, of the diagnoses. Diagnostic-research collaboration was critical to the diagnosis and variant interpretation in many cases, facilitated genotype-phenotype expansions and reclassified VUS through functional genomics.


Subject(s)
Arthrogryposis/diagnosis , Arthrogryposis/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Genomics , Phenotype , Alleles , Amino Acid Sequence , Amino Acid Substitution , Chromosome Mapping , Female , Genomics/methods , Genotype , High-Throughput Nucleotide Sequencing , Humans , Magnetic Resonance Imaging , Male , Mutation , Pedigree , Sequence Analysis, DNA , Exome Sequencing
6.
J Exp Med ; 217(10)2020 10 05.
Article in English | MEDLINE | ID: mdl-32639540

ABSTRACT

The exocyst, an octameric protein complex, is an essential component of the membrane transport machinery required for tethering and fusion of vesicles at the plasma membrane. We report pathogenic variants in an exocyst subunit, EXOC2 (Sec5). Affected individuals have severe developmental delay, dysmorphism, and brain abnormalities; variability associated with epilepsy; and poor motor skills. Family 1 had two offspring with a homozygous truncating variant in EXOC2 that leads to nonsense-mediated decay of EXOC2 transcript, a severe reduction in exocytosis and vesicle fusion, and undetectable levels of EXOC2 protein. The patient from Family 2 had a milder clinical phenotype and reduced exocytosis. Cells from both patients showed defective Arl13b localization to the primary cilium. The discovery of mutations that partially disable exocyst function provides valuable insight into this essential protein complex in neural development. Since EXOC2 and other exocyst complex subunits are critical to neuronal function, our findings suggest that EXOC2 variants are the cause of the patients' neurological disorders.


Subject(s)
Brain/abnormalities , Vesicular Transport Proteins/genetics , Brain/diagnostic imaging , Brain/growth & development , Developmental Disabilities/genetics , Female , Humans , Infant , Infant, Newborn , Magnetic Resonance Imaging , Male , Microcephaly/genetics , Mutation , Neuroimaging , Pedigree , Sequence Analysis, DNA , Vesicular Transport Proteins/physiology
7.
Mol Genet Metab ; 130(1): 49-57, 2020 05.
Article in English | MEDLINE | ID: mdl-32165008

ABSTRACT

BACKGROUND: Mutations in the ARV1 Homolog, Fatty Acid Homeostasis Modulator (ARV1), have recently been described in association with early infantile epileptic encephalopathy 38. Affected individuals presented with epilepsy, ataxia, profound intellectual disability, visual impairment, and central hypotonia. In S. cerevisiae, Arv1 is thought to be involved in sphingolipid metabolism and glycophosphatidylinositol (GPI)-anchor synthesis. The function of ARV1 in human cells, however, has not been elucidated. METHODS: Mutations were discovered through whole exome sequencing and alternate splicing was validated on the cDNA level. Expression of the variants was determined by qPCR and Western blot. Expression of GPI-anchored proteins on neutrophils and fibroblasts was analyzed by FACS and immunofluorescence microscopy, respectively. RESULTS: Here we describe seven patients from two unrelated families with biallelic splice mutations in ARV1. The patients presented with early onset epilepsy, global developmental delays, profound hypotonia, delayed speech development, cortical visual impairment, and severe generalized cerebral and cerebellar atrophy. The splice variants resulted in decreased ARV1 expression and significant decreases in GPI-anchored protein on the membranes of neutrophils and fibroblasts, indicating that the loss of ARV1 results in impaired GPI-anchor synthesis. CONCLUSION: Loss of GPI-anchored proteins on our patients' cells confirms that the yeast Arv1 function of GPI-anchor synthesis is conserved in humans. Overlap between the phenotypes in our patients and those reported for other GPI-anchor disorders suggests that ARV1-deficiency is a GPI-anchor synthesis disorder.


Subject(s)
Abnormalities, Multiple/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Developmental Disabilities/genetics , Epilepsy/genetics , Glycosylphosphatidylinositols/deficiency , Intellectual Disability/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Abnormalities, Multiple/physiopathology , Adolescent , Alternative Splicing/genetics , Child, Preschool , Developmental Disabilities/physiopathology , Epilepsy/physiopathology , Female , Fibroblasts/metabolism , GPI-Linked Proteins/metabolism , Glycosylphosphatidylinositols/biosynthesis , Homozygote , Humans , Infant , Infant, Newborn , Male , Mutation , Neutrophils/metabolism , Pedigree , Exome Sequencing
8.
Brain ; 143(1): 112-130, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31794024

ABSTRACT

The conserved transport protein particle (TRAPP) complexes regulate key trafficking events and are required for autophagy. TRAPPC4, like its yeast Trs23 orthologue, is a core component of the TRAPP complexes and one of the essential subunits for guanine nucleotide exchange factor activity for Rab1 GTPase. Pathogenic variants in specific TRAPP subunits are associated with neurological disorders. We undertook exome sequencing in three unrelated families of Caucasian, Turkish and French-Canadian ethnicities with seven affected children that showed features of early-onset seizures, developmental delay, microcephaly, sensorineural deafness, spastic quadriparesis and progressive cortical and cerebellar atrophy in an effort to determine the genetic aetiology underlying neurodevelopmental disorders. All seven affected subjects shared the same identical rare, homozygous, potentially pathogenic variant in a non-canonical, well-conserved splice site within TRAPPC4 (hg19:chr11:g.118890966A>G; TRAPPC4: NM_016146.5; c.454+3A>G). Single nucleotide polymorphism array analysis revealed there was no haplotype shared between the tested Turkish and Caucasian families suggestive of a variant hotspot region rather than a founder effect. In silico analysis predicted the variant to cause aberrant splicing. Consistent with this, experimental evidence showed both a reduction in full-length transcript levels and an increase in levels of a shorter transcript missing exon 3, suggestive of an incompletely penetrant splice defect. TRAPPC4 protein levels were significantly reduced whilst levels of other TRAPP complex subunits remained unaffected. Native polyacrylamide gel electrophoresis and size exclusion chromatography demonstrated a defect in TRAPP complex assembly and/or stability. Intracellular trafficking through the Golgi using the marker protein VSVG-GFP-ts045 demonstrated significantly delayed entry into and exit from the Golgi in fibroblasts derived from one of the affected subjects. Lentiviral expression of wild-type TRAPPC4 in these fibroblasts restored trafficking, suggesting that the trafficking defect was due to reduced TRAPPC4 levels. Consistent with the recent association of the TRAPP complex with autophagy, we found that the fibroblasts had a basal autophagy defect and a delay in autophagic flux, possibly due to unsealed autophagosomes. These results were validated using a yeast trs23 temperature sensitive variant that exhibits constitutive and stress-induced autophagic defects at permissive temperature and a secretory defect at restrictive temperature. In summary we provide strong evidence for pathogenicity of this variant in a member of the core TRAPP subunit, TRAPPC4 that associates with vesicular trafficking and autophagy defects. This is the first report of a TRAPPC4 variant, and our findings add to the growing number of TRAPP-associated neurological disorders.


Subject(s)
Autophagy/genetics , Craniofacial Abnormalities/genetics , Fibroblasts/metabolism , Nerve Tissue Proteins/genetics , Neurodevelopmental Disorders/genetics , Vesicular Transport Proteins/genetics , Atrophy , Cerebellum/diagnostic imaging , Cerebellum/pathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Child , Child, Preschool , Craniofacial Abnormalities/diagnostic imaging , Deafness/genetics , Deafness/physiopathology , Developmental Disabilities/genetics , Developmental Disabilities/physiopathology , Epilepsy/genetics , Epilepsy/physiopathology , Female , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/physiopathology , Humans , Infant , Infant, Newborn , Intellectual Disability/genetics , Intellectual Disability/physiopathology , Male , Microcephaly/genetics , Microcephaly/physiopathology , Microscopy, Fluorescence , Muscle Spasticity/genetics , Muscle Spasticity/physiopathology , Neurodevelopmental Disorders/physiopathology , Pedigree , Quadriplegia/genetics , Quadriplegia/physiopathology , RNA Splice Sites/genetics , Syndrome
10.
Genet Med ; 21(4): 867-876, 2019 04.
Article in English | MEDLINE | ID: mdl-30190611

ABSTRACT

PURPOSE: Neurofibromatosis type 1 (NF1) is characterized by a highly variable clinical presentation, but almost all NF1-affected adults present with cutaneous and/or subcutaneous neurofibromas. Exceptions are individuals heterozygous for the NF1 in-frame deletion, c.2970_2972del (p.Met992del), associated with a mild phenotype without any externally visible tumors. METHODS: A total of 135 individuals from 103 unrelated families, all carrying the constitutional NF1 p.Met992del pathogenic variant and clinically assessed using the same standardized phenotypic checklist form, were included in this study. RESULTS: None of the individuals had externally visible plexiform or histopathologically confirmed cutaneous or subcutaneous neurofibromas. We did not identify any complications, such as symptomatic optic pathway gliomas (OPGs) or symptomatic spinal neurofibromas; however, 4.8% of individuals had nonoptic brain tumors, mostly low-grade and asymptomatic, and 38.8% had cognitive impairment/learning disabilities. In an individual with the NF1 constitutional c.2970_2972del and three astrocytomas, we provided proof that all were NF1-associated tumors given loss of heterozygosity at three intragenic NF1 microsatellite markers and c.2970_2972del. CONCLUSION: We demonstrate that individuals with the NF1 p.Met992del pathogenic variant have a mild NF1 phenotype lacking clinically suspected plexiform, cutaneous, or subcutaneous neurofibromas. However, learning difficulties are clearly part of the phenotypic presentation in these individuals and will require specialized care.


Subject(s)
Learning Disabilities/genetics , Neurofibroma, Plexiform/genetics , Neurofibromatosis 1/genetics , Neurofibromin 1/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Genetic Association Studies , Genetic Predisposition to Disease , Heterozygote , Humans , Infant , Learning Disabilities/physiopathology , Male , Mutation, Missense/genetics , Neurofibroma, Plexiform/physiopathology , Neurofibromatosis 1/pathology , Sequence Deletion , Young Adult
11.
Clin Epigenetics ; 10(1): 114, 2018 08 30.
Article in English | MEDLINE | ID: mdl-30165906

ABSTRACT

BACKGROUND: Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder with a population frequency of approximately 1 in 10,000. The most common epigenetic defect in BWS is a loss of methylation (LOM) at the 11p15.5 imprinting centre, KCNQ1OT1 TSS-DMR, and affects 50% of cases. We hypothesised that genetic factors linked to folate metabolism may play a role in BWS predisposition via effects on methylation maintenance at KCNQ1OT1 TSS-DMR. RESULTS: Single nucleotide variants (SNVs) in the folate pathway affecting methylenetetrahydrofolate reductase (MTHFR), methionine synthase reductase (MTRR), 5-methyltetrahydrofolate-homocysteine S-methyltransferase (MTR), cystathionine beta-synthase (CBS) and methionine adenosyltransferase (MAT1A) were examined in 55 BWS patients with KCNQ1OT1 TSS-DMR LOM and in 100 unaffected cases. MTHFR rs1801133: C>T was more prevalent in BWS with KCNQ1OT1 TSS-DMR LOM (p < 0.017); however, the relationship was not significant when the Bonferroni correction for multiple testing was applied (significance, p = 0.0036). None of the remaining 13 SNVs were significantly different in the two populations tested. The DNMT1 locus was screened in 53 BWS cases, and three rare missense variants were identified in each of three patients: rs138841970: C>T, rs150331990: A>G and rs757460628: G>A encoding NP_001124295 p.Arg136Cys, p.His1118Arg and p.Arg1223His, respectively. These variants have population frequencies of less than 1 in 1000 and were absent from 100 control cases. Functional characterization using a hemimethylated DNA trapping assay revealed a reduced methyltransferase activity relative to wild-type DNMT1 for each variant ranging from 40 to 70% reduction in activity. CONCLUSIONS: This study is the first to examine folate pathway genetics in BWS and to identify rare DNMT1 missense variants in affected individuals. Our data suggests that reduced DNMT1 activity could affect maintenance of methylation at KCNQ1OT1 TSS-DMR in some cases of BWS, possibly via a maternal effect in the early embryo. Larger cohort studies are warranted to further interrogate the relationship between impaired MTHFR enzymatic activity attributable to MTHFR rs1801133: C>T, dietary folate intake and BWS.


Subject(s)
Beckwith-Wiedemann Syndrome/genetics , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA Methylation , Folic Acid/metabolism , Mutation, Missense , Beckwith-Wiedemann Syndrome/metabolism , Female , Genomic Imprinting , HeLa Cells , Humans , Male , Metabolic Networks and Pathways , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Polymorphism, Single Nucleotide , Potassium Channels, Voltage-Gated/genetics
12.
Genet Med ; 20(9): 1061-1068, 2018 09.
Article in English | MEDLINE | ID: mdl-29215649

ABSTRACT

PURPOSE: The craniosynostoses are characterized by premature fusion of one or more cranial sutures. The relative contribution of previously reported genes to craniosynostosis in large cohorts is unclear. Here we report on the use of a massively parallel sequencing panel in individuals with craniosynostosis without a prior molecular diagnosis. METHODS: A 20-gene panel was designed based on the genes' association with craniosynostosis, and clinically validated through retrospective testing of an Australian and New Zealand cohort of 233 individuals with craniosynostosis in whom previous testing had not identified a causative variant within FGFR1-3 hot-spot regions or the TWIST1 gene. An additional 76 individuals were tested prospectively. RESULTS: Pathogenic or likely pathogenic variants in non-FGFR genes were identified in 43 individuals, with diagnostic yields of 14% and 15% in retrospective and prospective cohorts, respectively. Variants were identified most frequently in TCF12 (N = 22) and EFNB1 (N = 8), typically in individuals with nonsyndromic coronal craniosynostosis or TWIST1-negative clinically suspected Saethre-Chotzen syndrome. Clinically significant variants were also identified in ALX4, EFNA4, ERF, and FGF10. CONCLUSION: These findings support the clinical utility of a massively parallel sequencing panel for craniosynostosis. TCF12 and EFNB1 should be included in genetic testing for nonsyndromic coronal craniosynostosis or clinically suspected Saethre-Chotzen syndrome.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Craniosynostoses/genetics , Ephrin-B1/genetics , Australia , Cohort Studies , Cranial Sutures/pathology , DNA-Binding Proteins/genetics , Female , Fibroblast Growth Factor 10/genetics , Genetic Testing , High-Throughput Nucleotide Sequencing/methods , Humans , Male , New Zealand , Nuclear Proteins/genetics , Prospective Studies , Receptor, Fibroblast Growth Factor, Type 1/genetics , Repressor Proteins/genetics , Retrospective Studies , Transcription Factors/genetics , Twist-Related Protein 1/genetics
13.
N Engl J Med ; 377(6): 544-552, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28792876

ABSTRACT

BACKGROUND: Congenital malformations can be manifested as combinations of phenotypes that co-occur more often than expected by chance. In many such cases, it has proved difficult to identify a genetic cause. We sought the genetic cause of cardiac, vertebral, and renal defects, among others, in unrelated patients. METHODS: We used genomic sequencing to identify potentially pathogenic gene variants in families in which a person had multiple congenital malformations. We tested the function of the variant by using assays of in vitro enzyme activity and by quantifying metabolites in patient plasma. We engineered mouse models with similar variants using the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 system. RESULTS: Variants were identified in two genes that encode enzymes of the kynurenine pathway, 3-hydroxyanthranilic acid 3,4-dioxygenase (HAAO) and kynureninase (KYNU). Three patients carried homozygous variants predicting loss-of-function changes in the HAAO or KYNU proteins (HAAO p.D162*, HAAO p.W186*, or KYNU p.V57Efs*21). Another patient carried heterozygous KYNU variants (p.Y156* and p.F349Kfs*4). The mutant enzymes had greatly reduced activity in vitro. Nicotinamide adenine dinucleotide (NAD) is synthesized de novo from tryptophan through the kynurenine pathway. The patients had reduced levels of circulating NAD. Defects similar to those in the patients developed in the embryos of Haao-null or Kynu-null mice owing to NAD deficiency. In null mice, the prevention of NAD deficiency during gestation averted defects. CONCLUSIONS: Disruption of NAD synthesis caused a deficiency of NAD and congenital malformations in humans and mice. Niacin supplementation during gestation prevented the malformations in mice. (Funded by the National Health and Medical Research Council of Australia and others.).


Subject(s)
3-Hydroxyanthranilate 3,4-Dioxygenase/genetics , Congenital Abnormalities/genetics , Dietary Supplements , Hydrolases/genetics , NAD/deficiency , Niacin/therapeutic use , 3-Hydroxyanthranilate 3,4-Dioxygenase/metabolism , Anal Canal/abnormalities , Animals , Congenital Abnormalities/prevention & control , Disease Models, Animal , Esophagus/abnormalities , Female , Heart Defects, Congenital/genetics , Heart Defects, Congenital/prevention & control , Humans , Hydrolases/metabolism , Kidney/abnormalities , Limb Deformities, Congenital/genetics , Limb Deformities, Congenital/prevention & control , Male , Mice , Mice, Knockout , Mutation , NAD/biosynthesis , NAD/genetics , Sequence Analysis, DNA , Spine/abnormalities , Trachea/abnormalities
14.
Am J Med Genet A ; 173(8): 2189-2200, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28599087

ABSTRACT

Achondroplasia is an autosomal dominant disorder, the most common genetic cause of short stature in humans. Reference curves for head circumference, weight, height, and BMI are needed in clinical practice but none exist for the Australian population. This study aimed to produce head circumference, height, weight, and BMI reference percentile curves for Australian children and adolescents with achondroplasia. Measurements of head circumference, height and weight taken at clinical visits were retrospectively extracted from the electronic medical record. Age was corrected for prematurity. Patients were excluded from head circumference analysis if they had significant neurosurgical complications and from the weight and BMI analysis when they had a clinical diagnosis of overweight. Measurements were available on 138 individuals (69 males and 69 females) taken between 1970 and 2015, with over 50% collected since 2005. A total of 3,352 data points were available. The LMS method was used to produce growth charts with estimated centiles (10, 25, 50, 75, and 90th) separately for males and females. For females birth weight was 3 kg (2.5-3.5 kg), birth length 48 cm (44-50 cm) and head circumference 37.5 cm (36-39 cm), adult height was 125 cm (116-132 cm), weight 42 kg (34-54 kg), and head circumference 58 cm (55.5-60.5 cm) all 50th centile (10-90th). For males birth weight was 3.5 kg (3-4 kg), length 49 cm (46-52 cm) and head circumference 38.5 cm (36-41 cm), adult height was 134 cm (125-141 cm), weight 41 kg (24.5-57 kg) and head circumference 61 cm (58-64 cm). The curves are similar to previously published reference data from the USA and have expected population wide variation from curves from an Argentinian population. Despite limitations of our curves for adolescents (12 years and older) due to data paucity, these Australian growth charts for children and adolescents with achondroplasia will be a useful reference in clinical practice.


Subject(s)
Achondroplasia/physiopathology , Anthropometry , Birth Weight/physiology , Body Height/physiology , Achondroplasia/epidemiology , Achondroplasia/genetics , Adolescent , Australia , Body Mass Index , Child , Female , Growth Charts , Humans , Infant, Newborn , Infant, Premature , Male
15.
J Paediatr Child Health ; 51(4): 373-80, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25290912

ABSTRACT

The term 'joint hypermobility' describes synovial joints that move beyond a normal range of motion. 'Joint hypermobilty syndrome' may also be associated with significant symptoms and impaired quality of life. The purpose of this review is to help the generalist to recognise the condition, exclude significant alternative diagnoses and understand the multidisciplinary approach to management.


Subject(s)
Joint Instability/congenital , Diagnosis, Differential , Humans , Joint Instability/diagnosis , Joint Instability/etiology , Joint Instability/physiopathology , Joint Instability/rehabilitation
16.
Twin Res Hum Genet ; 17(6): 578-83, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25431289

ABSTRACT

Since the discovery in 1989 that mutations in cystic fibrosis transmembrane conductance regulator (CFTR) underlie cystic fibrosis (CF), the most common life shortening genetic disorder in Caucasians, it has been possible to identify heterozygous mutation carriers at risk of having affected children. The Human Genetics Society of Australasia has produced a position statement with recommendations in relation to population-based screening for CF. These include: (1) that screening should be offered to all relatives of people with or carriers of CF (cascade testing) as well as to all couples planning to have children or who are pregnant; (2) the minimum CFTR mutation panel to be tested consists of 17 mutations which are those mutations that are associated with typical CF and occur with a frequency of 0.1% or higher among individuals diagnosed with CF in Australasia; (3) that genetic counselling is offered to all couples where both members are known to have one or two CFTR mutations and that such couples are given the opportunity to meet with a physician with expertise in the management of CF as well as a family/individual affected by the condition.


Subject(s)
Cystic Fibrosis/genetics , Diseases in Twins/genetics , Genetic Carrier Screening , Heterozygote , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Humans , Mutation
17.
PLoS One ; 9(6): e90852, 2014.
Article in English | MEDLINE | ID: mdl-24603971

ABSTRACT

Delineating candidate genes at the chromosomal breakpoint regions in the apparently balanced chromosome rearrangements (ABCR) has been shown to be more effective with the emergence of next-generation sequencing (NGS) technologies. We employed a large-insert (7-11 kb) paired-end tag sequencing technology (DNA-PET) to systematically analyze genome of four patients harbouring cytogenetically defined ABCR with neurodevelopmental symptoms, including developmental delay (DD) and speech disorders. We characterized structural variants (SVs) specific to each individual, including those matching the chromosomal breakpoints. Refinement of these regions by Sanger sequencing resulted in the identification of five disrupted genes in three individuals: guanine nucleotide binding protein, q polypeptide (GNAQ), RNA-binding protein, fox-1 homolog (RBFOX3), unc-5 homolog D (C.elegans) (UNC5D), transmembrane protein 47 (TMEM47), and X-linked inhibitor of apoptosis (XIAP). Among them, XIAP is the causative gene for the immunodeficiency phenotype seen in the patient. The remaining genes displayed specific expression in the fetal brain and have known biologically relevant functions in brain development, suggesting putative candidate genes for neurodevelopmental phenotypes. This study demonstrates the application of NGS technologies in mapping individual gene disruptions in ABCR as a resource for deciphering candidate genes in human neurodevelopmental disorders (NDDs).


Subject(s)
Chromosome Breakpoints , Developmental Disabilities/genetics , Language Development Disorders/genetics , Base Sequence , Chromosome Inversion , DNA Copy Number Variations , Female , Genetic Association Studies , High-Throughput Nucleotide Sequencing , Humans , Male , Molecular Sequence Data , Pedigree , Sequence Analysis, DNA , Translocation, Genetic
18.
Hum Mutat ; 34(12): 1632-41, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24038909

ABSTRACT

Capillary malformation-arteriovenous malformation (CM-AVM) is an autosomal-dominant disorder, caused by heterozygous RASA1 mutations, and manifesting multifocal CMs and high risk for fast-flow lesions. A limited number of patients have been reported, raising the question of the phenotypic borders. We identified new patients with a clinical diagnosis of CM-AVM, and patients with overlapping phenotypes. RASA1 was screened in 261 index patients with: CM-AVM (n = 100), common CM(s) (port-wine stain; n = 100), Sturge-Weber syndrome (n = 37), or isolated AVM(s) (n = 24). Fifty-eight distinct RASA1 mutations (43 novel) were identified in 68 index patients with CM-AVM and none in patients with other phenotypes. A novel clinical feature was identified: cutaneous zones of numerous small white pale halos with a central red spot. An additional question addressed in this study was the "second-hit" hypothesis as a pathophysiological mechanism for CM-AVM. One tissue from a patient with a germline RASA1 mutation was available. The analysis of the tissue showed loss of the wild-type RASA1 allele. In conclusion, mutations in RASA1 underscore the specific CM-AVM phenotype and the clinical diagnosis is based on identifying the characteristic CMs. The high incidence of fast-flow lesions warrants careful clinical and radiologic examination, and regular follow-up.


Subject(s)
Arteriovenous Malformations/diagnosis , Arteriovenous Malformations/genetics , Capillaries/abnormalities , Mutation , Phenotype , Port-Wine Stain/diagnosis , Port-Wine Stain/genetics , p120 GTPase Activating Protein/genetics , Amino Acid Substitution , DNA Mutational Analysis , Female , Gene Order , Genetic Association Studies , Humans , Male , Prospective Studies , Retrospective Studies
19.
J Paediatr Child Health ; 49(7): 519-25, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23600797

ABSTRACT

Children develop in the domains of cognition, speech and language, motor, personal skills, social skills and activities of daily living in a predictable and organised manner. Between 3000 and 9000 Australian children born in any one year may be diagnosed with global developmental delay. Paediatricians are often faced with the dilemma of 'who' and 'how' to investigate, as the yield is often considered to be low. 'Best practice' guidelines on the investigation of global developmental delay have been published, but the evidence available for the specific recommendations varies significantly and is based mostly on levels III and IV evidence (non-experimental descriptive studies and expert opinions). This paper discusses the current views and suggests a possible algorithm for clinical practice in Australia.


Subject(s)
Developmental Disabilities/diagnosis , Intellectual Disability/diagnosis , Metabolism, Inborn Errors/diagnosis , Child , Child, Preschool , DNA Mutational Analysis , Developmental Disabilities/genetics , Female , Genetic Diseases, X-Linked , Genetic Testing , Humans , Intellectual Disability/genetics , Male , Metabolism, Inborn Errors/genetics , Oligonucleotide Array Sequence Analysis , Prevalence
20.
Eur J Hum Genet ; 21(5): 522-7, 2013 May.
Article in English | MEDLINE | ID: mdl-22968132

ABSTRACT

Rett syndrome is a clinically defined neurodevelopmental disorder almost exclusively affecting females. Usually sporadic, Rett syndrome is caused by mutations in the X-linked MECP2 gene in ∼90-95% of classic cases and 40-60% of individuals with atypical Rett syndrome. Mutations in the CDKL5 gene have been associated with the early-onset seizure variant of Rett syndrome and mutations in FOXG1 have been associated with the congenital Rett syndrome variant. We report the clinical features and array CGH findings of three atypical Rett syndrome patients who had severe intellectual impairment, early-onset developmental delay, postnatal microcephaly and hypotonia. In addition, the females had a seizure disorder, agenesis of the corpus callosum and subtle dysmorphism. All three were found to have an interstitial deletion of 14q12. The deleted region in common included the PRKD1 gene but not the FOXG1 gene. Gene expression analysis suggested a decrease in FOXG1 levels in two of the patients. Screening of 32 atypical Rett syndrome patients did not identify any pathogenic mutations in the PRKD1 gene, although a previously reported frameshift mutation affecting FOXG1 (c.256dupC, p.Gln86ProfsX35) was identified in a patient with the congenital Rett syndrome variant. There is phenotypic overlap between congenital Rett syndrome variants with FOXG1 mutations and the clinical presentation of our three patients with this 14q12 microdeletion, not encompassing the FOXG1 gene. We propose that the primary defect in these patients is misregulation of the FOXG1 gene rather than a primary abnormality of PRKD1.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 14/genetics , Forkhead Transcription Factors/genetics , Gene Expression Regulation/genetics , Nerve Tissue Proteins/genetics , Phenotype , Protein Kinase C/genetics , Rett Syndrome/genetics , Child , Comparative Genomic Hybridization , Cytogenetic Analysis , DNA Mutational Analysis , Fatal Outcome , Female , Gene Expression Profiling , Humans , Male , Microarray Analysis , Rett Syndrome/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...