Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters










Publication year range
1.
Opt Lett ; 49(7): 1737-1740, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38560850

ABSTRACT

Inference of joule-class THz radiation sources from microchannel targets driven with hundreds of joule, picosecond lasers is reported. THz sources of this magnitude are useful for nonlinear pumping of matter and for charged-particle acceleration and manipulation. Microchannel targets demonstrate increased laser-THz conversion efficiency compared to planar foil targets, with laser energy to THz energy conversion up to ∼0.9% in the best cases.

2.
Phys Rev Lett ; 130(22): 225101, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37327418

ABSTRACT

Collective modes in a plasma, like phonons in a solid, contribute to a material's equation of state and transport properties, but the long wavelengths of these modes are difficult to simulate with today's finite-size quantum simulation techniques. A simple Debye-type calculation of the specific heat of electron plasma waves is presented, yielding up to 0.05k/e^{-} for warm dense matter (WDM), where thermal and Fermi energies are near 1 Ry=13.6 eV. This overlooked energy reservoir is sufficient to explain reported compression differences between theoretical hydrogen models and shock experiments. Such an additional specific heat contribution refines our understanding of systems passing through the WDM regime, such as the convective threshold in low-mass main-sequence stars, white dwarf envelopes, and substellar objects; WDM x-ray scattering experiments; and the compression of inertial confinement fusion fuels.


Subject(s)
Electrons , Hot Temperature , Models, Theoretical , Hydrogen , Pressure
3.
Phys Rev Lett ; 130(7): 076101, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36867795

ABSTRACT

Silicon (Si) exhibits a rich collection of phase transitions under ambient-temperature isothermal and shock compression. This report describes in situ diffraction measurements of ramp-compressed Si between 40 and 389 GPa. Angle-dispersive x-ray scattering reveals that Si assumes an hexagonal close-packed (hcp) structure between 40 and 93 GPa and, at higher pressure, a face-centered cubic structure that persists to at least 389 GPa, the highest pressure for which the crystal structure of Si has been investigated. The range of hcp stability extends to higher pressures and temperatures than predicted by theory.

4.
Rev Sci Instrum ; 94(1): 013101, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36725595

ABSTRACT

Two extended x-ray absorption fine structure flat crystal x-ray spectrometers (EFX's) were designed and built for high-resolution x-ray spectroscopy over a large energy range with flexible, on-shot energy dispersion calibration capabilities. The EFX uses a flat silicon [111] crystal in the reflection geometry as the energy dispersive optic covering the energy range of 6.3-11.4 keV and achieving a spectral resolution of 4.5 eV with a source size of 50 µm at 7.2 keV. A shot-to-shot configurable calibration filter pack and Bayesian inference routine were used to constrain the energy dispersion relation to within ±3 eV. The EFX was primarily designed for x-ray absorption fine structure (XAFS) spectroscopy and provides significant improvement to the Laboratory for Laser Energetics' OMEGA-60 XAFS experimental platform. The EFX is capable of performing extended XAFS measurements of multiple absorption edges simultaneously on metal alloys and x-ray absorption near-edge spectroscopy to measure the electron structure of compressed 3d transition metals.

5.
Sci Rep ; 13(1): 2227, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36755138

ABSTRACT

Contact and projection electron radiography of static targets was demonstrated using a laser-plasma accelerator driven by a kilojoule, picosecond-class laser as a source of relativistic electrons with an average energy of 20 MeV. Objects with areal densities as high as 7.7 g/cm2 were probed in materials ranging from plastic to tungsten, and radiographs with resolution as good as 90 µm were produced. The effects of electric fields produced by the laser ablation of the radiography objects were observed and are well described by an analytic expression relating imaging magnification change to electric-field strength.

6.
Rev Sci Instrum ; 93(11): 115102, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36461483

ABSTRACT

Talbot-Lau x-ray interferometry is a refraction-based diagnostic that can map electron density gradients through phase-contrast methods. The Talbot-Lau x-ray deflectometry (TXD) diagnostics have been deployed in several high energy density experiments. To improve diagnostic performance, a monochromatic TXD was implemented on the Multi-Tera Watt (MTW) laser using 8 keV multilayer mirrors (Δθ/θ = 4.5%-5.6%). Copper foil and wire targets were irradiated at 1014-1015 W/cm2. Laser pulse length (∼10 to 80 ps) and backlighter target configurations were explored in the context of Moiré fringe contrast and spatial resolution. Foil and wire targets delivered increased contrast <30%. The best spatial resolution (<6 µm) was measured for foils irradiated 80° from the surface. Further TXD diagnostic capability enhancement was achieved through the development of advanced data postprocessing tools. The Talbot Interferometry Analysis (TIA) code enabled x-ray refraction measurements from the MTW monochromatic TXD. Additionally, phase, attenuation, and dark-field maps of an ablating x-pinch load were retrieved through TXD. The images show a dense wire core of ∼60 µm diameter surrounded by low-density material of ∼40 µm thickness with an outer diameter ratio of ∼2.3. Attenuation at 8 keV was measured at ∼20% for the dense core and ∼10% for the low-density material. Instrumental and experimental limitations for monochromatic TXD diagnostics are presented. Enhanced postprocessing capabilities enabled by TIA are demonstrated in the context of high-intensity laser and pulsed power experimental data analysis. Significant advances in TXD diagnostic capabilities are presented. These results inform future diagnostic technique upgrades that will improve the accuracy of plasma characterization through TXD.

7.
Rev Sci Instrum ; 93(12): 123502, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36586943

ABSTRACT

A highly adaptable and robust terahertz (THz) energy meter is designed and implemented to detect energetic THz pulses from high-intensity (>1018 W/cm2) laser-plasma interactions on the OMEGA EP. THz radiation from the laser driven target is detected by a shielded pyrometer. A second identical pyrometer is used for background subtraction. The detector can be configured to detect THz pulses in the 1 mm to 30 µm (0.3- to 10-THz) range and pulse energies from joules to microjoules via changes in filtration, aperture size, and position. Additional polarization selective filtration can also be used to determine the THz pulse polarization. The design incorporates significant radiation and electromagnetic pulse shielding to survive and operate within the OMEGA EP radiation environment. We describe the design, operational principle, calibration, and testing of the THz energy meter. The pyrometers were calibrated using a benchtop laser and show linear sensitivity to up to 1000 nJ of absorbed energy. The initial results from four OMEGA EP THz experiments detected up to ∼15µJ at the detector, which can correspond to hundreds of mJ depending on THz emission and reflection models.

9.
Rev Sci Instrum ; 92(6): 065110, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34243593

ABSTRACT

Talbot-Lau x-ray interferometry has been implemented to map electron density gradients in High Energy Density Physics (HEDP) experiments. X-ray backlighter targets have been evaluated for Talbot-Lau X-ray Deflectometry (TXD). Cu foils, wires, and sphere targets have been irradiated by 10-150 J, 8-30 ps laser pulses, while two pulsed-power generators (∼350 kA, 350 ns and ∼200 kA, 150 ns) have driven Cu wire, hybrid, and laser-cut x-pinches. A plasma ablation front generated by the Omega EP laser was imaged for the first time through TXD for densities >1023 cm-3. Backlighter optimization in combination with x-ray CCD, image plates, and x-ray film has been assessed in terms of spatial resolution and interferometer contrast for accurate plasma characterization through TXD in pulsed-power and high-intensity laser environments. The results obtained thus far demonstrate the potential of TXD as a powerful diagnostic for HEDP.

10.
Phys Rev Lett ; 126(25): 255701, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34241515

ABSTRACT

Tantalum was once thought to be the canonical bcc metal, but is now predicted to transition to the Pnma phase at the high pressures and temperatures expected along the principal Hugoniot. Furthermore, there remains a significant discrepancy between a number of static diamond anvil cell experiments and gas gun experiments in the measured melt temperatures at high pressures. Our in situ x-ray diffraction experiments on shock compressed tantalum show that it does not transition to the Pnma phase or other candidate phases at high pressure. We observe incipient melting at approximately 254±15 GPa and complete melting by 317±10 GPa. These transition pressures from the nanosecond experiments presented here are consistent with what can be inferred from microsecond gas gun sound velocity measurements. Furthermore, the observation of a coexistence region on the Hugoniot implies the lack of significant kinetically controlled deviation from equilibrium behavior. Consequently, we find that kinetics of phase transitions cannot be used to explain the discrepancy between static and dynamic measurements of the tantalum melt curve. Using available high pressure thermodynamic data for tantalum and our measurements of the incipient and complete melting transition pressures, we are able to infer a melting temperature 8070_{-750}^{+1250} K at 254±15 GPa, which is consistent with ambient and a recent static high pressure melt curve measurement.

11.
Nature ; 593(7860): 517-521, 2021 05.
Article in English | MEDLINE | ID: mdl-34040210

ABSTRACT

The phase behaviour of warm dense hydrogen-helium (H-He) mixtures affects our understanding of the evolution of Jupiter and Saturn and their interior structures1,2. For example, precipitation of He from a H-He atmosphere at about 1-10 megabar and a few thousand kelvin has been invoked to explain both the excess luminosity of Saturn1,3, and the depletion of He and neon (Ne) in Jupiter's atmosphere as observed by the Galileo probe4,5. But despite its importance, H-He phase behaviour under relevant planetary conditions remains poorly constrained because it is challenging to determine computationally and because the extremes of temperature and pressure are difficult to reach experimentally. Here we report that appropriate temperatures and pressures can be reached through laser-driven shock compression of H2-He samples that have been pre-compressed in diamond-anvil cells. This allows us to probe the properties of H-He mixtures under Jovian interior conditions, revealing a region of immiscibility along the Hugoniot. A clear discontinuous change in sample reflectivity indicates that this region ends above 150 gigapascals at 10,200 kelvin and that a more subtle reflectivity change occurs above 93 gigapascals at 4,700 kelvin. Considering pressure-temperature profiles for Jupiter, these experimental immiscibility constraints for a near-protosolar mixture suggest that H-He phase separation affects a large fraction-we estimate about 15 per cent of the radius-of Jupiter's interior. This finding provides microphysical support for Jupiter models that invoke a layered interior to explain Juno and Galileo spacecraft observations1,4,6-8.

12.
Nature ; 589(7843): 532-535, 2021 01.
Article in English | MEDLINE | ID: mdl-33505034

ABSTRACT

Carbon is the fourth-most prevalent element in the Universe and essential for all known life. In the elemental form it is found in multiple allotropes, including graphite, diamond and fullerenes, and it has long been predicted that even more structures can exist at pressures greater than those at Earth's core1-3. Several phases have been predicted to exist in the multi-terapascal regime, which is important for accurate modelling of the interiors of carbon-rich exoplanets4,5. By compressing solid carbon to 2 terapascals (20 million atmospheres; more than five times the pressure at Earth's core) using ramp-shaped laser pulses and simultaneously measuring nanosecond-duration time-resolved X-ray diffraction, we found that solid carbon retains the diamond structure far beyond its regime of predicted stability. The results confirm predictions that the strength of the tetrahedral molecular orbital bonds in diamond persists under enormous pressure, resulting in large energy barriers that hinder conversion to more-stable high-pressure allotropes1,2, just as graphite formation from metastable diamond is kinetically hindered at atmospheric pressure. This work nearly doubles the highest pressure at which X-ray diffraction has been recorded on any material.

13.
Philos Trans A Math Phys Eng Sci ; 379(2189): 20200011, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33280561

ABSTRACT

Laser-direct drive (LDD), along with laser indirect (X-ray) drive (LID) and magnetic drive with pulsed power, is one of the three viable inertial confinement fusion approaches to achieving fusion ignition and gain in the laboratory. The LDD programme is primarily being executed at both the Omega Laser Facility at the Laboratory for Laser Energetics and at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. LDD research at Omega includes cryogenic implosions, fundamental physics including material properties, hydrodynamics and laser-plasma interaction physics. LDD research on the NIF is focused on energy coupling and laser-plasma interactions physics at ignition-scale plasmas. Limited implosions on the NIF in the 'polar-drive' configuration, where the irradiation geometry is configured for LID, are also a feature of LDD research. The ability to conduct research over a large range of energy, power and scale size using both Omega and the NIF is a major positive aspect of LDD research that reduces the risk in scaling from OMEGA to megajoule-class lasers. The paper will summarize the present status of LDD research and plans for the future with the goal of ultimately achieving a burning plasma in the laboratory. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.

14.
Phys Rev E ; 102(5-1): 053210, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33327091

ABSTRACT

High-energy-density (HED) experiments in convergent geometry are able to test physical models at pressures beyond hundreds of millions of atmospheres. The measurements from these experiments are generally highly integrated and require unique analysis techniques to procure quantitative information. This work describes a methodology to constrain the physics in convergent HED experiments by adapting the methods common to many other fields of physics. As an example, a mechanical model of an imploding shell is constrained by data from a thin-shelled direct-drive exploding-pusher experiment on the OMEGA laser system using Bayesian inference, resulting in the reconstruction of the shell dynamics and energy transfer during the implosion. The model is tested by analyzing synthetic data from a one-dimensional hydrodynamics code and is sampled using a Markov chain Monte Carlo to generate the posterior distributions of the model parameters. The goal of this work is to demonstrate a general methodology that can be used to draw conclusions from a wide variety of HED experiments.

15.
Phys Rev Lett ; 125(21): 215001, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33274978

ABSTRACT

Energy flow and balance in convergent systems beyond petapascal energy densities controls the fate of late-stage stars and the potential for controlling thermonuclear inertial fusion ignition. Time-resolved x-ray self-emission imaging combined with a Bayesian inference analysis is used to describe the energy flow and the potential information stored in the rebounding spherical shock at 0.22 PPa (2.2 Gbar or billions of atmospheres pressure). This analysis, together with a simple mechanical model, describes the trajectory of the shell and the time history of the pressure at the fuel-shell interface, ablation pressure, and energy partitioning including kinetic energy of the shell and internal energy of the fuel. The techniques used here provide a fully self-consistent uncertainty analysis of integrated implosion data, a thermodynamic-path independent measurement of pressure in the petapascal range, and can be used to deduce the energy flow in a wide variety of implosion systems to petapascal energy densities.

16.
Phys Rev Lett ; 125(16): 165701, 2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33124844

ABSTRACT

Equation-of-state (pressure, density, temperature, internal energy) and reflectivity measurements on shock-compressed CO_{2} at and above the insulating-to-conducting transition reveal new insight into the chemistry of simple molecular systems in the warm-dense-matter regime. CO_{2} samples were precompressed in diamond-anvil cells to tune the initial densities from 1.35 g/cm^{3} (liquid) to 1.74 g/cm^{3} (solid) at room temperature and were then shock compressed up to 1 TPa and 93 000 K. Variation in initial density was leveraged to infer thermodynamic derivatives including specific heat and Gruneisen coefficient, exposing a complex bonded and moderately ionized state at the most extreme conditions studied.

17.
Rev Sci Instrum ; 91(4): 043902, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32357733

ABSTRACT

We report details of an experimental platform implemented at the National Ignition Facility to obtain in situ powder diffraction data from solids dynamically compressed to extreme pressures. Thin samples are sandwiched between tamper layers and ramp compressed using a gradual increase in the drive-laser irradiance. Pressure history in the sample is determined using high-precision velocimetry measurements. Up to two independently timed pulses of x rays are produced at or near the time of peak pressure by laser illumination of thin metal foils. The quasi-monochromatic x-ray pulses have a mean wavelength selectable between 0.6 Å and 1.9 Å depending on the foil material. The diffracted signal is recorded on image plates with a typical 2θ x-ray scattering angle uncertainty of about 0.2° and resolution of about 1°. Analytic expressions are reported for systematic corrections to 2θ due to finite pinhole size and sample offset. A new variant of a nonlinear background subtraction algorithm is described, which has been used to observe diffraction lines at signal-to-background ratios as low as a few percent. Variations in system response over the detector area are compensated in order to obtain accurate line intensities; this system response calculation includes a new analytic approximation for image-plate sensitivity as a function of photon energy and incident angle. This experimental platform has been used up to 2 TPa (20 Mbar) to determine the crystal structure, measure the density, and evaluate the strain-induced texturing of a variety of compressed samples spanning periods 2-7 on the periodic table.

18.
Phys Rev E ; 101(3-1): 033205, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32290020

ABSTRACT

We present direct measurements of electron temperature variations within an inertially confined deuterium-tritium plasma caused by localized mix of higher-Z materials into the central hot spot. The data are derived from newly developed differentially filtered penumbral imaging of the bremsstrahlung continuum emission. Our analysis reveals distinct localized emitting features in the stagnated hot-spot plasma, and we infer spatial variations in the electron temperature: the mixed region is 660±130eV colder than the surrounding hot-spot plasma at 3.26±0.11keV. Our analysis of the energy flow shows that we measure approximately steady-state conditions where the radiative losses in the mix region are balanced by heat conduction from the surrounding hot deuterium-tritium plasma.

19.
Phys Rev E ; 101(2-1): 023205, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32168644

ABSTRACT

Currently there is considerable interest in creating scalable laboratory plasmas to study the mechanisms behind the formation and evolution of astrophysical phenomena such as Herbig-Haro objects and supernova remnants. Laboratory-scaled experiments can provide a well diagnosed and repeatable supplement to direct observations of these extraterrestrial objects if they meet similarity criteria demonstrating that the same physics govern both systems. Here, we present a study on the role of collision and cooling rates on shock formation using colliding jets from opposed conical wire arrays on a compact pulsed-power driver. These diverse conditions were achieved by changing the wire material feeding the jets, since the ion-ion mean free path (λ_{mfp-ii}) and radiative cooling rates (P_{rad}) increase with atomic number. Low Z carbon flows produced smooth, temporally stable shocks. Weakly collisional, moderately cooled aluminum flows produced strong shocks that developed signs of thermal condensation instabilities and turbulence. Weakly collisional, strongly cooled copper flows collided to form thin shocks that developed inconsistently and fragmented. Effectively collisionless, strongly cooled tungsten flows interpenetrated, producing long axial density perturbations.

20.
Phys Rev Lett ; 122(25): 255702, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31347873

ABSTRACT

We present laser-driven shock compression experiments on cryogenic liquid deuterium to 550 GPa along the principal Hugoniot and reflected-shock data up to 1 TPa. High-precision interferometric Doppler velocimetry and impedance-matching analysis were used to determine the compression accurately enough to reveal a significant difference as compared to state-of-the-art ab initio calculations and thus, no single equation of state model fully matches the principal Hugoniot of deuterium over the observed pressure range. In the molecular-to-atomic transition pressure range, models based on density functional theory calculations predict the maximum compression accurately. However, beyond 250 GPa along the principal Hugoniot, first-principles models exhibit a stiffer response than the experimental data. Similarly, above 500 GPa the reflected shock data show 5%-7% higher compression than predicted by all current models.

SELECTION OF CITATIONS
SEARCH DETAIL
...