Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Sports Sci ; 38(16): 1844-1858, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32449644

ABSTRACT

Running is a common exercise with numerous health benefits. Vertical ground reaction force (vGRF) influences running injury risk and running performance. Measurement of vGRF during running is now primarily constrained to a laboratory setting. The purpose of this study was to evaluate a new approach to measuring vGRF during running. This approach can be used outside of the laboratory and involves running shoes instrumented with novel piezoresponsive sensors and a standard accelerometer. Thirty-one individuals ran at three different speeds on a force-instrumented treadmill while wearing the instrumented running shoes. vGRF was predicted using data collected from the instrumented shoes, and predicted vGRF were compared to vGRF measured via the treadmill. Per cent error of the resulting predictions varied depending upon the predicted vGRF characteristic. Per cent error was relatively low for predicted vGRF impulse (2-7%), active peak vGRF (3-7%), and ground contact time (3-6%), but relatively high for predicted vGRF load rates (22-29%). These errors should decrease with future iterations of the instrumented shoes and collection of additional data from a more diverse sample. The novel technology described herein might become a feasible way to collect large amounts of vGRF data outside of the traditional biomechanics laboratory.


Subject(s)
Accelerometry/instrumentation , Accelerometry/methods , Nanocomposites , Running/physiology , Adolescent , Biomechanical Phenomena , Equipment Design , Female , Gait Analysis , Humans , Male , Models, Statistical , Principal Component Analysis , Young Adult
2.
J Appl Stat ; 47(8): 1439-1459, 2020.
Article in English | MEDLINE | ID: mdl-35706701

ABSTRACT

Satellite remote-sensing is used to collect important atmospheric and geophysical data at various spatial resolutions, providing insight into spatiotemporal surface and climate variability globally. These observations are often plagued with missing spatial and temporal information of Earth's surface due to (1) cloud cover at the time of a satellite passing and (2) infrequent passing of polar-orbiting satellites. While many methods are available to model missing data in space and time, in the case of land surface temperature (LST) from thermal infrared remote sensing, these approaches generally ignore the temporal pattern called the 'diurnal cycle' which physically constrains temperatures to peak in the early afternoon and reach a minimum at sunrise. In order to infill an LST dataset, we parameterize the diurnal cycle into a functional form with unknown spatiotemporal parameters. Using multiresolution spatial basis functions, we estimate these parameters from sparse satellite observations to reconstruct an LST field with continuous spatial and temporal distributions. These estimations may then be used to better inform scientists of spatiotemporal thermal patterns over relatively complex domains. The methodology is demonstrated using data collected by MODIS on NASA's Aqua and Terra satellites over both Houston, TX and Phoenix, AZ USA.

SELECTION OF CITATIONS
SEARCH DETAIL
...