Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Gen Physiol ; 145(5): 431-42, 2015 May.
Article in English | MEDLINE | ID: mdl-25918361

ABSTRACT

Although PI(4,5)P2 is believed to play an essential role in regulating the activity of numerous ion channels and transporters, the mechanisms by which it does so are unknown. Here, we used the ability of the TRPV1 ion channel to discriminate between PI(4,5)P2 and PI(4)P to localize the region of TRPV1 sequence that interacts directly with the phosphoinositide. We identified a point mutation in the proximal C-terminal region after the TRP box, R721A, that inverted the selectivity of TRPV1. Although the R721A mutation produced only a 30% increase in the EC50 for activation by PI(4,5)P2, it decreased the EC50 for activation by PI(4)P by more than two orders of magnitude. We used chemically induced and voltage-activated phosphatases to determine that PI(4)P continued to support TRPV1 activity even after depletion of PI(4,5)P2 from the plasma membrane. Our data cannot be explained by a purely electrostatic mechanism for interaction between the phosphoinositide and the protein, similar to that of the MARCKS (myristoylated alanine-rich C kinase substrate) effector domain or the EGF receptor. Rather, conversion of a PI(4,5)P2-selective channel to a PI(4)P-selective channel indicates that a structured phosphoinositide-binding site mediates the regulation of TRPV1 activity and that the amino acid at position 721 likely interacts directly with the moiety at the 5' position of the phosphoinositide.


Subject(s)
Ion Channel Gating , Phosphatidylinositol 4,5-Diphosphate/metabolism , TRPV Cation Channels/metabolism , Amino Acid Sequence , Animals , Cell Line, Tumor , HEK293 Cells , Humans , Molecular Sequence Data , Protein Binding , Rats , TRPV Cation Channels/chemistry
2.
J Biol Chem ; 289(16): 10999-11006, 2014 Apr 18.
Article in English | MEDLINE | ID: mdl-24599956

ABSTRACT

Membrane asymmetry is essential for generating second messengers that act in the cytosol and for trafficking of membrane proteins and membrane lipids, but the role of asymmetry in regulating membrane protein function remains unclear. Here we show that the signaling lipid phosphoinositide 4,5-bisphosphate (PI(4,5)P2) has opposite effects on the function of TRPV1 ion channels depending on which leaflet of the cell membrane it resides in. We observed potentiation of capsaicin-activated TRPV1 currents by PI(4,5)P2 in the intracellular leaflet of the plasma membrane but inhibition of capsaicin-activated currents when PI(4,5)P2 was in both leaflets of the membrane, although much higher concentrations of PI(4,5)P2 in the extracellular leaflet were required for inhibition compared with the concentrations of PI(4,5)P2 in the intracellular leaflet that produced activation. Patch clamp fluorometry using a synthetic PI(4,5)P2 whose fluorescence reports its concentration in the membrane indicates that PI(4,5)P2 must incorporate into the extracellular leaflet for its inhibitory effects to be observed. The asymmetry-dependent effect of PI(4,5)P2 may resolve the long standing controversy about whether PI(4,5)P2 is an activator or inhibitor of TRPV1. Our results also underscore the importance of membrane asymmetry and the need to consider its influence when studying membrane proteins reconstituted into synthetic bilayers.


Subject(s)
Cell Membrane/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , TRPV Cation Channels/metabolism , Antipruritics/pharmacology , Capsaicin/pharmacology , Cell Line , Cell Membrane/genetics , Humans , Phosphatidylinositol 4,5-Diphosphate/genetics , TRPV Cation Channels/genetics
3.
Biophys J ; 105(11): 2485-94, 2013 Dec 03.
Article in English | MEDLINE | ID: mdl-24314079

ABSTRACT

Phosphoinositides are vital for many cellular signaling processes, and therefore a number of approaches to manipulating phosphoinositide levels in cells or excised patches of cell membranes have been developed. Among the most common is the use of "short-chain" phosphoinositides, usually dioctanoyl phosphoinositol phosphates. We use isothermal titration calorimetry to determine partitioning of the most abundant phosphoinositol phosphates, PI(4)P and PI(4,5)P2 into models of the intracellular and extracellular facing leaflets of neuronal plasma membranes. We show that phosphoinositide mole fractions in the lipid membrane reach physiological levels at equilibrium with reasonable solution concentrations. Finally we explore the consequences of our results for cellular electrophysiology. In particular, we find that TRPV1 is more selective for PI(4,5)P2 than PI(4)P and activated by extremely low membrane mole fractions of PIPs. We conclude by discussing how the logic of our work extends to other experiments with short-chain phosphoinositides. For delayed rectifier K(+) channels, consideration of the membrane mole fraction of PI(4,5)P2 lipids with different acyl chain lengths suggests a different mechanism for PI(4,5)P2 regulation than previously proposed. Inward rectifier K(+) channels apparent lack of selectivity for certain short-chain PIPs may require reinterpretation in view of the PIPs different membrane partitioning.


Subject(s)
Cell Membrane/metabolism , Models, Biological , Phosphatidylinositol Phosphates/metabolism , Cell Membrane/chemistry , HEK293 Cells , Humans , Liposomes/chemistry , Liposomes/metabolism , Phosphatidylinositol Phosphates/chemistry , Shab Potassium Channels/metabolism , TRPV Cation Channels/metabolism
4.
J Vis Exp ; (76)2013 06 21.
Article in English | MEDLINE | ID: mdl-23851612

ABSTRACT

The reconstitution of ion channels into chemically defined lipid membranes for electrophysiological recording has been a powerful technique to identify and explore the function of these important proteins. However, classical preparations, such as planar bilayers, limit the manipulations and experiments that can be performed on the reconstituted channel and its membrane environment. The more cell-like structure of giant liposomes permits traditional patch-clamp experiments without sacrificing control of the lipid environment. Electroformation is an efficient mean to produce giant liposomes >10 µm in diameter which relies on the application of alternating voltage to a thin, ordered lipid film deposited on an electrode surface. However, since the classical protocol calls for the lipids to be deposited from organic solvents, it is not compatible with less robust membrane proteins like ion channels and must be modified. Recently, protocols have been developed to electroform giant liposomes from partially dehydrated small liposomes, which we have adapted to protein-containing liposomes in our laboratory. We present here the background, equipment, techniques, and pitfalls of electroformation of giant liposomes from small liposome dispersions. We begin with the classic protocol, which should be mastered first before attempting the more challenging protocols that follow. We demonstrate the process of controlled partial dehydration of small liposomes using vapor equilibrium with saturated salt solutions. Finally, we demonstrate the process of electroformation itself. We will describe simple, inexpensive equipment that can be made in-house to produce high-quality liposomes, and describe visual inspection of the preparation at each stage to ensure the best results.


Subject(s)
Electrochemical Techniques/methods , Liposomes/chemistry , Patch-Clamp Techniques/methods , Ion Channels/chemistry , Salts/chemistry , Solutions
5.
Annu Rev Biophys ; 40: 81-98, 2011.
Article in English | MEDLINE | ID: mdl-21275639

ABSTRACT

High-pressure methods for solving protein structures by X-ray crystallography and NMR are maturing. These techniques are beginning to impact our understanding of thermodynamic and structural features that define not only the protein's native conformation, but also the higher free energy conformations. The ability of high-pressure methods to visualize these mostly unexplored conformations provides new insight into protein function and dynamics. In this review, we begin with a historical discussion of high-pressure structural studies, with an eye toward early results that paved the way to mapping the multiple conformations of proteins. This is followed by an examination of several recent studies that emphasize different strengths and uses of high-pressure structural studies, ranging from basic thermodynamics to the suggestion of high-pressure structural methods as a tool for protein engineering.


Subject(s)
Crystallography/methods , Magnetic Resonance Spectroscopy/methods , Protein Conformation , Proteins/chemistry , Proteins/ultrastructure , Pressure
6.
Proc Natl Acad Sci U S A ; 107(37): 16060-5, 2010 Sep 14.
Article in English | MEDLINE | ID: mdl-20798343

ABSTRACT

Nanopore sequencing has the potential to become a direct, fast, and inexpensive DNA sequencing technology. The simplest form of nanopore DNA sequencing utilizes the hypothesis that individual nucleotides of single-stranded DNA passing through a nanopore will uniquely modulate an ionic current flowing through the pore, allowing the record of the current to yield the DNA sequence. We demonstrate that the ionic current through the engineered Mycobacterium smegmatis porin A, MspA, has the ability to distinguish all four DNA nucleotides and resolve single-nucleotides in single-stranded DNA when double-stranded DNA temporarily holds the nucleotides in the pore constriction. Passing DNA with a series of double-stranded sections through MspA provides proof of principle of a simple DNA sequencing method using a nanopore. These findings highlight the importance of MspA in the future of nanopore sequencing.


Subject(s)
DNA/analysis , Mycobacterium smegmatis/chemistry , Nanostructures/chemistry , Porins/metabolism , Sequence Analysis, DNA/methods , Base Sequence , DNA/chemistry , DNA/metabolism , Models, Molecular , Mycobacterium smegmatis/metabolism , Nucleic Acid Conformation , Porosity , Protein Structure, Tertiary
7.
Biophys J ; 95(1): 236-46, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18424504

ABSTRACT

Membranes containing a wide variety of ternary mixtures of high chain-melting temperature lipids, low chain-melting temperature lipids, and cholesterol undergo lateral phase separation into coexisting liquid phases at a miscibility transition. When membranes are prepared from a ternary lipid mixture at a critical composition, they pass through a miscibility critical point at the transition temperature. Since the critical temperature is typically on the order of room temperature, membranes provide an unusual opportunity in which to perform a quantitative study of biophysical systems that exhibit critical phenomena in the two-dimensional Ising universality class. As a critical point is approached from either high or low temperature, the scale of fluctuations in lipid composition, set by the correlation length, diverges. In addition, as a critical point is approached from low temperature, the line tension between coexisting phases decreases to zero. Here we quantitatively evaluate the temperature dependence of line tension between liquid domains and of fluctuation correlation lengths in lipid membranes to extract a critical exponent, nu. We obtain nu = 1.2 +/- 0.2, consistent with the Ising model prediction nu = 1. We also evaluate the probability distributions of pixel intensities in fluorescence images of membranes. From the temperature dependence of these distributions above the critical temperature, we extract an independent critical exponent of beta = 0.124 +/- 0.03, which is consistent with the Ising prediction of beta = 1/8.


Subject(s)
Membrane Fluidity , Models, Chemical , Models, Molecular , Computer Simulation , Lipid Bilayers/chemistry , Phase Transition , Surface Tension , Temperature
8.
Proc Natl Acad Sci U S A ; 105(1): 124-8, 2008 Jan 08.
Article in English | MEDLINE | ID: mdl-18172219

ABSTRACT

Plasma membranes of cells are asymmetric in both lipid and protein composition. The mechanism by which proteins on both sides of the membrane colocalize during signaling events is unknown but may be due to the induction of inner leaflet domains by the outer leaflet. Here we show that liquid domains form in asymmetric Montal-Mueller planar bilayers in which one leaflet's composition would phase-separate in a symmetric bilayer and the other's would not. Equally important, by tuning the lipid composition of the second leaflet, we are able to suppress domains in the first leaflet. When domains are present in asymmetric membranes, each leaflet contains regions of three distinct lipid compositions, implying strong interleaflet interactions. Our results show that mechanisms of domain induction between the outer and inner leaflets of cell plasma membranes do not necessarily require the participation of membrane proteins. Based on these findings, we suggest mechanisms by which cells could actively regulate protein function by modulating local lipid composition or interleaflet interactions.


Subject(s)
Biochemistry/methods , Lipid Bilayers/chemistry , Lipids/chemistry , Alkanes/chemistry , Biological Transport , Cell Membrane/metabolism , Cholesterol/chemistry , Membrane Microdomains/metabolism , Models, Chemical , Oxygen/chemistry , Phosphatidylcholines/chemistry , Protein Structure, Tertiary , Temperature
9.
Biophys J ; 94(5): L32-4, 2008 Mar 01.
Article in English | MEDLINE | ID: mdl-18096628

ABSTRACT

Whereas it appears to be generally believed that the leaflets of a phospholipid/cholesterol bilayer interact with each other in some way, the exact mechanism remains undetermined. Various suggestions have been invoked, including chain interdigitation and rapid translocation of cholesterol. There is little, if any, direct evidence supporting or excluding these hypotheses. In this letter, I examine a few different possibilities. Chain interdigitation is unlikely to be significant. Cholesterol translocation meets some, though not all, of the relevant criteria, and probably plays an important role. The simplest explanation is that the layers interact at the midplane in the same way that the ordered and disordered liquid phases common in these systems interact at their interfaces. A quick estimate of that interfacial energy shows that this is a very likely candidate. The consequences of such an energy in biological systems are briefly considered.


Subject(s)
Cholesterol/chemistry , Lipid Bilayers/chemistry , Lipids/chemistry , Membrane Fluidity , Membrane Microdomains/chemistry , Cell Membrane/chemistry , Cell Membrane/metabolism , Surface Properties , Thermodynamics
10.
Chem Phys Lipids ; 148(1): 26-50, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17524381

ABSTRACT

The thermotropic phase behaviour of aqueous dispersions of some synthetic 1,2-di-O-alkyl-3-O-(beta-D-galactosyl)-rac-glycerols (rac-beta-D-GalDAGs) with both odd and even hydrocarbon chain lengths was studied by differential scanning calorimetry (DSC), small-angle (SAXS) and wide-angle (WAXS) X-ray diffraction. DSC heating curves show a complex pattern of lamellar (L) and nonlamellar (NL) phase polymorphism dependent on the sample's thermal history. On cooling from 95 degrees C and immediate reheating, rac-beta-D-GalDAGs typically show a single, strongly energetic phase transition, corresponding to either a lamellar gel/liquid-crystalline (L(beta)/L(alpha)) phase transition (N< or =15 carbon atoms) or a lamellar gel/inverted hexagonal (L(beta)/H(II)) phase transition (N> or =16). At higher temperatures, some shorter chain compounds (N=10-13) exhibit additional endothermic phase transitions, identified as L/NL phase transitions using SAXS/WAXS. The NL morphology and the number of associated intermediate transitions vary with hydrocarbon chain length. Typically, at temperatures just above the L(alpha) phase boundary, a region of phase coexistence consisting of two inverted cubic (Q(II)) phases are observed. The space group of the cubic phase seen on initial heating has not been determined; however, on further heating, this Q(II) phase disappears, enabling the identification of the second Q(II) phase as Pn3 m (space group Q(224)). Only the Pn3 m phase is seen on cooling. Under suitable annealing conditions, rac-beta-D-GalDAGs rapidly form highly ordered lamellar-crystalline (L(c)) phases at temperatures above (N< or =15) or below (N=16-18) the L(beta)/L(alpha) phase transition temperature (T(m)). In the N< or =15 chain length lipids, DSC heating curves show two overlapping, highly energetic, endothermic peaks on heating above T(m); corresponding changes in the first-order spacings are observed by SAXS, accompanied by two different, complex patterns of reflections in the WAXS region. The WAXS data show that there is a difference in hydrocarbon chain packing, but no difference in bilayer dimensions or hydrocarbon chain tilt for these two L(c) phases (termed L(c1) and L(c2), respectively). Continued heating of suitably annealed, shorter chain rac-beta-D-GalDAGs from the L(c2) phase results in a phase transition to an L(alpha) phase and, on further heating, to the same Q(II) or H(II) phases observed on first heating. On reheating annealed samples with longer chain lengths, a subgel phase is formed. This is characterized by a single, poorly energetic endotherm visible below the T(m). SAXS/WAXS identifies this event as an L(c)/L(beta) phase transition. However, the WAXS reflections in the di-16:0 lipid do not entirely correspond to the reflections seen for either the L(c1) or L(c2) phases present in the shorter chain rac-beta-D-GalDAGs; rather these consist of a combination of L(c1), L(c2) and L(beta) reflections, consistent with DSC data where all three phase transitions occur within a span of 5 degrees C. At very long chain lengths (N> or =19), the L(beta)/L(c) conversion process is so slow that no L(c) phases are formed over the time scale of our experiments. The L(beta)/L(c) phase conversion process is significantly faster than that seen in the corresponding rac-beta-D-GlcDAGs, but is slower than in the 1,2-sn-beta-D-GalDAGs already studied. The L(alpha)/NL phase transition temperatures are also higher in the rac-beta-D-GalDAGs than in the corresponding rac-beta-D-GlcDAGs, suggesting that the orientation of the hydroxyl at position 4 and the chirality of the glycerol molecule in the lipid/water interface influence both the L(c) and NL phase properties of these lipids, probably by controlling the relative positions of hydrogen bond donors and acceptors in the polar region of the membrane.


Subject(s)
Galactolipids/chemistry , Thermodynamics , Calorimetry, Differential Scanning , Galactolipids/chemical synthesis , Models, Molecular , Molecular Structure , Phase Transition , Stereoisomerism , X-Ray Diffraction
11.
J Mol Biol ; 367(3): 752-63, 2007 Mar 30.
Article in English | MEDLINE | ID: mdl-17292912

ABSTRACT

Steric constraints, charged interactions and many other forces important to protein structure and function can be explored by mutagenic experiments. Research of this kind has led to a wealth of knowledge about what stabilizes proteins in their folded states. To gain a more complete picture requires that we perturb these structures in a continuous manner, something mutagenesis cannot achieve. With high pressure crystallographic methods it is now possible to explore the detailed properties of proteins while continuously varying thermodynamic parameters. Here, we detail the structural response of the cavity-containing mutant L99A of T4 lysozyme, as well as its pseudo wild-type (WT*) counterpart, to hydrostatic pressure. Surprisingly, the cavity has almost no effect on the pressure response: virtually the same changes are observed in WT* as in L99A under pressure. The cavity is most rigid, while other regions deform substantially. This implies that while some residues may increase the thermodynamic stability of a protein, they may also be structurally irrelevant. As recently shown, the cavity fills with water at pressures above 100 MPa while retaining its overall size. The resultant picture of the protein is one in which conformationally fluctuating side groups provide a liquid-like environment, but which also contribute to the rigidity of the peptide backbone.


Subject(s)
Muramidase/chemistry , Amino Acid Substitution , Bacteriophage T4/enzymology , Bacteriophage T4/genetics , Crystallography, X-Ray , Enzyme Stability , Hydrostatic Pressure , Models, Molecular , Muramidase/genetics , Protein Conformation , Thermodynamics
12.
Proc Natl Acad Sci U S A ; 102(46): 16668-71, 2005 Nov 15.
Article in English | MEDLINE | ID: mdl-16269539

ABSTRACT

Formation of a water-expelling nonpolar core is the paradigm of protein folding and stability. Although experiment largely confirms this picture, water buried in "hydrophobic" cavities is required for the function of some proteins. Hydration of the protein core has also been suggested as the mechanism of pressure-induced unfolding. We therefore are led to ask whether even the most nonpolar protein core is truly hydrophobic (i.e., water-repelling). To answer this question we probed the hydration of an approximately 160-A(3), highly hydrophobic cavity created by mutation in T4 lysozyme by using high-pressure crystallography and molecular dynamics simulation. We show that application of modest pressure causes approximately four water molecules to enter the cavity while the protein itself remains essentially unchanged. The highly cooperative filling is primarily due to a small change in bulk water activity, which implies that changing solvent conditions or, equivalently, cavity polarity can dramatically affect interior hydration of proteins and thereby influence both protein activity and folding.


Subject(s)
Crystallography/methods , Proteins/chemistry , Water/chemistry , Pressure , Thermodynamics
13.
Science ; 299(5605): 345-6, 2003 Jan 17.
Article in English | MEDLINE | ID: mdl-12532978
SELECTION OF CITATIONS
SEARCH DETAIL
...