Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Mater Horiz ; 8(1): 197-208, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-34821298

ABSTRACT

Two-dimensional (2D) excitons arise from electron-hole confinement along one spatial dimension. Such excitations are often described in terms of Frenkel or Wannier limits according to the degree of exciton spatial localization and the surrounding dielectric environment. In hybrid material systems, such as the 2D perovskites, the complex underlying interactions lead to excitons of an intermediate nature, whose description lies somewhere between the two limits, and a better physical description is needed. Here, we explore the photophysics of a tuneable materials platform where covalently bonded metal-chalcogenide layers are spaced by organic ligands that provide confinement barriers for charge carriers in the inorganic layer. We consider self-assembled, layered bulk silver benzeneselenolate, [AgSePh]∞, and use a combination of transient absorption spectroscopy and ab initio GW plus Bethe-Salpeter equation calculations. We demonstrate that in this non-polar dielectric environment, strongly anisotropic excitons dominate the optical transitions of [AgSePh]∞. We find that the transient absorption measurements at room temperature can be understood in terms of low-lying excitons confined to the AgSe planes with in-plane anisotropy, featuring anisotropic absorption and emission. Finally, we present a pathway to control the exciton behaviour by changing the chalcogen in the material lattice. Our studies unveil unexpected excitonic anisotropies in an unexplored class of tuneable, yet air-stable, hybrid quantum wells, offering design principles for the engineering of an ordered, yet complex dielectric environment and its effect on the excitonic phenomena in such emerging materials.

2.
ACS Nano ; 15(3): 4085-4092, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33166467

ABSTRACT

Light matter interactions are greatly enhanced in two-dimensional (2D) semiconductors because of strong excitonic effects. Many optoelectronic applications would benefit from creating stacks of atomically thin 2D semiconductors separated by insulating barrier layers, forming multiquantum-well structures. However, most 2D transition metal chalcogenide systems require serial stacking to create van der Waals multilayers. Hybrid metal organic chalcogenolates (MOChas) are self-assembling hybrid materials that combine multiquantum-well properties with scalable chemical synthesis and air stability. In this work, we use spatially resolved linear and nonlinear optical spectroscopies over a range of temperatures to study the strongly excitonic optical properties of mithrene, that is, silver benzeneselenolate, and its synthetic isostructures. We experimentally probe s-type bright excitons and p-type excitonic dark states formed in the quantum confined 2D inorganic monolayers of silver selenide with exciton binding energy up to ∼0.4 eV, matching recent theoretical predictions of the material class. We further show that mithrene's highly efficient blue photoluminescence, ultrafast exciton radiative dynamics, as well as flexible tunability of molecular structure and optical properties demonstrate great potential of MOChas for constructing optoelectronic and quantum excitonic devices.

3.
Chemistry ; 25(58): 13290-13293, 2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31456286

ABSTRACT

An unusual trithioorthoformate-capped cyclophane cage was assembled via antimony-activated iodine oxidation of thiols as confirmed by 1 H-NMR spectroscopy and X-ray crystallography. The disulfide bridges can undergo desulfurization with hexamethylphosphorous triamide (HMPT) at ambient temperature to capture a trithioether cyclophane cage capped by the trithioorthoformate. In both cages a methine proton points directly into the small cavity. This unexpected structure is hypothesized to have formed as a result of haloform insertion during oxidation.

4.
Inorg Chem ; 57(7): 3486-3496, 2018 Apr 02.
Article in English | MEDLINE | ID: mdl-29412648

ABSTRACT

The synthesis of large cyclic and caged disulfide structures was achieved by pnictogen-assisted iodine oxidation starting from self-assembled pnictogen thiolate complexes. The directing behavior of pnictogen enables rapid and selective syntheses of many discrete disulfide assemblies over competing oligomers/polymers, ranging from structures that are small and strained to those that are large and multifaceted, including 3D cages. Traditional cyclization reactions carried out under kinetic control are generally low-yielding, which often results in the formation of insoluble oligomers and polymers as unwanted side products. The prospect of self-assembling organic structures efficiently under thermodynamic control adds an attractive tool for the synthesis of cyclophanes and other large cage compounds. This method of metaloid-directed self-assembly within a dynamic covalent system allows for the rapid and discriminant self-assembly of disulfide cyclophanes without the consequences sometimes seen in traditional cyclophane syntheses such as poor yields, long reaction times, low ring-closing selectivity, and extensive purifications. The present paper provides an overview of this approach, explores the role of the pnictogen additive and solvent in this reaction, begins to test the limits of this strategy in complex 3D molecule formation, and extends our strategy to include one-pot syntheses that do not require the use of a pnictogen additive. This Viewpoint also includes an extended introduction to serve as a minireview highlighting the utility of a self-assembly approach to create organic cage structures. From a practical standpoint, the cyclophanes isolated from this method can serve as precursors in the production of insulating plastics (e.g., through the widely used parylene polymerization process, which uses derivatives of paracyclophane as monomers) or as potential hosts for molecular separations or capture.

5.
Nat Commun ; 7: 11052, 2016 Apr 04.
Article in English | MEDLINE | ID: mdl-27040370

ABSTRACT

Cyclophanes are a venerable class of macrocyclic and/or cage compounds that often feature high strain, unusual conformations and quite surprising properties, many of which are legendary in physical organic chemistry. However, the discovery of new, diverse cyclophanes and derivatives has been hindered by syntheses that are traditionally low-yielding, requiring long reaction times, laborious purification steps and often extreme conditions. Herein, we demonstrate a new self-assembly route to a variety of discrete cyclic and caged disulfide structures, which can then be kinetically captured upon sulfur extrusion at room temperature to give a diversity of new thioether (hetera)cyclophanes in high yield. In addition to the synthesis of novel macrocycles (dimers through hexamers), this process provides an improved route to a known macrobicyclic trithiacyclophane. This technique also enables the facile isolation of a tetrahedral macrotricyclic tetrathiacyclophane in two steps at an ambient temperature.

6.
Chem Commun (Camb) ; 52(13): 2768-71, 2016 Feb 14.
Article in English | MEDLINE | ID: mdl-26762538

ABSTRACT

We report a family of highly anionic calixarenes that form discrete homo-dimeric assemblies in pure water, that get stronger in high salt solutions, and that remain assembled in complex, denaturing solutions like real urine. The results reveal the potential of like-charged subunits for self-assembly in high-salt solutions and biological fluids.


Subject(s)
Salts/chemistry , Water/chemistry , Magnetic Resonance Spectroscopy
7.
Chem Sci ; 6(4): 2444-2448, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-29308156

ABSTRACT

The synthesis of six trinuclear Pn3L2 macrobicycles (Pn = As, Sb) was achieved by self-assembly of a pnictogen trichloride and a 2,4,6-trisubstituted-1,3,5-benzenetrimethanethiol ligand. 1H-NMR spectroscopy reveals self-assembly in 1,1,2,2-tetrachloroethane is dynamic in solution producing two structural isomers. The symmetric and the asymmetric isomers (in which a single chloride ligand is cast in an opposing direction from other chlorides) of the As3L2 complexes exist in a ca. 2 : 1 distribution, whereas only the symmetric isomer is observed in solution for Sb3L2. Solvent effects appear to influence conformational isomerism and conversion to the final products. Macrobicycles were confirmed by 1H-NMR spectroscopy and X-ray crystallography and further studied by MP2/LANL2DZ optimizations.

8.
Chem Commun (Camb) ; 50(1): 73-5, 2014 Jan 04.
Article in English | MEDLINE | ID: mdl-24201472

ABSTRACT

We present the observation that chloride serves as a simple catalyst for the acceleration of a self-assembly reaction between AsCl3 and dithiolate ligands (H2L) to form As2L3 assemblies. Studies on a model monomeric arsenic complex suggest that chloride may accelerate ligand exchange dynamics in pnictogen thiolates in general.

9.
Chem Soc Rev ; 43(6): 1825-34, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24346298

ABSTRACT

Substituting one metal for another in inorganic and organometallic systems is a proven strategy for synthesizing complex molecules, and in some cases, provides the only route to a particular system. The multivalent nature of the coordination in metal-ligand assemblies lends itself more readily to some types of transmetalation. For instance, a binding site can open up for exchange without greatly effecting the many other interactions holding the structure together. In addition to exchanging the metal and altering the local binding environment, transmetalation in supramolecular systems can also lead to substantial changes in the nature of the secondary and tertiary structure of a larger assembly. In this tutorial review we will cover discrete supramolecular assemblies in which metals are exchanged. First we will address fully formed structures where direct substitution replaces one type of metal for another without changing the overall supramolecular assembly. We will then address systems where the disruptive exchange of one metal for another leads to a larger change in the supramolecular assembly. When possible we have tried to highlight systems that use supramolecular self-assembly in tandem with transmetalation to synthesize new structures not accessible through a more direct approach. At the end of this review, we highlight the use of transmetalation in self-assembled aqueous inorganic clusters and discuss the consequences for material science applications.


Subject(s)
Metals, Heavy/chemistry , Organometallic Compounds/chemical synthesis , Macromolecular Substances/chemical synthesis , Macromolecular Substances/chemistry , Molecular Structure , Organometallic Compounds/chemistry
10.
Dalton Trans ; 42(36): 13251-64, 2013 Sep 28.
Article in English | MEDLINE | ID: mdl-23884080

ABSTRACT

A redox-switchable ligand, N,N'-dimethyldiaminocarbene[3]ferrocenophane (5), was synthesized and incorporated into a series of Ir- and Ru-based complexes. Electrochemical and spectroscopic analyses of (5)Ir(CO)2Cl (15) revealed that 5 displayed a Tolman electronic parameter value of 2050 cm(-1) in the neutral state and 2061 cm(-1) upon oxidation. Moreover, inspection of X-ray crystallography data recorded for (5)Ir(cis,cis-1,5-cyclooctadiene)Cl (13) revealed that 5 was sterically less bulky (%V(Bur) = 28.4) than other known diaminocarbene[3]ferrocenophanes, which facilitated the synthesis of (5)(PPh3)Cl2Ru(3-phenylindenylid-1-ene) (18). Complex 18 exhibited quasi-reversible electrochemical processes at 0.79 and 0.98 V relative to SCE, which were assigned to the Fe and Ru centers in the complex, respectively, based on UV-vis and electron pair resonance spectroscopic measurements. Adding 2,3-dichloro-5,6-dicyanoquinone over the course of a ring-opening metathesis polymerization of cis,cis-1,5-cyclooctadiene catalyzed by 18 ([monomer]0/[18]0 = 2500) reduced the corresponding rate constant of the reaction by over an order of magnitude (pre-oxidation: k(obs) = 0.045 s(-1); post-oxidation: k(obs) = 0.0012 s(-1)). Subsequent reduction of the oxidized species using decamethylferrocene restored catalytic activity (post-reduction: k(obs) = up to 0.016 s(-1), depending on when the reductant was added). The difference in the polymerization rates was attributed to the relative donating ability of the redox-active ligand (i.e., strongly donating 5 versus weakly donating 5(+)) which ultimately governed the activity displayed by the corresponding catalyst.

11.
Chem Commun (Camb) ; 49(59): 6599-601, 2013 Jul 28.
Article in English | MEDLINE | ID: mdl-23770675

ABSTRACT

Cyclic disulfide macrocycles were rapidly synthesized cleanly and selectively from rigid dithiols via oxidation with iodine when activated by pnictogen additives (As and Sb). Macrocycles were confirmed by (1)H-NMR spectroscopy and X-ray crystallography. A p-xylyl-based disulfide trimer and tetramer crystallized in hollow, stacked columns stabilized by intermolecular, sulfur···sulfur close contacts.


Subject(s)
Antimony/chemistry , Arsenic/chemistry , Disulfides/chemical synthesis , Macrocyclic Compounds/chemical synthesis , Crystallography, X-Ray , Disulfides/chemistry , Macrocyclic Compounds/chemistry , Models, Molecular , Molecular Structure
12.
Acc Chem Res ; 46(4): 955-66, 2013 Apr 16.
Article in English | MEDLINE | ID: mdl-22726207

ABSTRACT

Interactions between ions and aromatic rings are now a mainstay in the field of supramolecular chemistry. The prototypical cation-π interaction, first characterized in the gas phase, is now well-known as an important contributor to protein structure and enzyme function and as a noncovalent force found in many synthetic systems. The complementary "anion-π interaction"-defined as an electrostatic attraction between an anion positioned over the centroid of an aromatic ring-has recently emerged as another reversible ion-π interaction in supramolecular systems. This type of interaction could offer new selectivity in binding poorly basic, strongly solvated anions and may also affect structure, biological function, and anion transport. This Account describes our group's efforts in ion-π interactions in two areas. We first describe a series of self-assembled Group 15 (pnictogen)-thiolate complexes, all featuring prominent cation-π interactions between the trivalent pnictogen and an aromatic ring of the ligand. This structural feature appears to stabilize a variety of self-assembled dinuclear macrocycles, dinuclear M2L3 cryptand-analogues, and a tetranuclear As4L2 metallocyclophane. These complexes are all remarkably robust and feature intramolecular cation-π interactions, which suggest that these interactions could be an important feature in ligand design for the Group 15 elements. We also highlight our efforts to characterize the interaction between anions and electron-deficient aromatic rings in solution. Complementary crystallographic and computational studies suggest that off-center weak-σ interactions play the dominant role in stabilizing the anion-arene adducts unless an acidic CH bond is present to participate in favorable CH···anion hydrogen bonds. In solution the weak-σ complexes show downfield shifts of the proton resonances in their NMR spectra. With more polarizable anions such as bromide and iodide, we also observe anion binding by UV/vis spectroscopy. Initial solution studies suggest these reversible interactions are weak in organic solvents, but the Hofmeister bias in anion binding could be mitigated, if not reversed, in the halides using these anion-π type interactions.


Subject(s)
Anions/chemistry , Cations/chemistry , Binding Sites , Hydrogen Bonding , Ligands , Models, Molecular
13.
Inorg Chem ; 48(14): 6924-33, 2009 Jul 20.
Article in English | MEDLINE | ID: mdl-19537803

ABSTRACT

Bimetallic [Ir(COD)Cl] and [Ir(ppy)(2)] (COD = 1,5-cyclooctadiene; ppy = 2-phenylpyridyl) complexes bridged by 1,7-dimethyl-3,5-diphenylbenzobis(imidazolylidene) (1), in addition to their monometallic analogues supported by 1-methyl-3-phenylbenzimidazolylidene (2), were synthesized and studied. Electrochemical analyses indicated that 1 facilitated moderate electronic coupling between [Ir(COD)Cl] units (DeltaE = approximately 60 mV), but not [Ir(ppy)(2)]. The metal-based oxidation potentials for the bimetallic complexes were within 20 mV of those for their monometallic analogues. Furthermore, spectroscopic analyses of the [Ir(ppy)(2)] bimetallic and monometallic complexes revealed nearly identical phosphorescence profiles, indicating that carbene coordination does not affect the energy of the emissive states. Collectively, these results suggest that N-heterocyclic carbenes (NHCs) such as 1 could link together two emissive fragments without altering their fundamental phosphorescence profiles. Ultimately, employing multitopic NHCs as non-interfering molecular connectors could facilitate the rational design of new phosphorescent materials as well as second-generation phosphor dopants.

SELECTION OF CITATIONS
SEARCH DETAIL
...