Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
J Cell Biol ; 222(4)2023 04 03.
Article in English | MEDLINE | ID: mdl-36912772

ABSTRACT

Septins are filamentous GTPases that play important but poorly characterized roles in ciliogenesis. Here, we show that SEPTIN9 regulates RhoA signaling at the base of cilia by binding and activating the RhoA guanine nucleotide exchange factor, ARHGEF18. GTP-RhoA is known to activate the membrane targeting exocyst complex, and suppression of SEPTIN9 causes disruption of ciliogenesis and mislocalization of an exocyst subunit, SEC8. Using basal body-targeted proteins, we show that upregulating RhoA signaling at the cilium can rescue ciliary defects and mislocalization of SEC8 caused by global SEPTIN9 depletion. Moreover, we demonstrate that the transition zone components, RPGRIP1L and TCTN2, fail to accumulate at the transition zone in cells lacking SEPTIN9 or depleted of the exocyst complex. Thus, SEPTIN9 regulates the recruitment of transition zone proteins on Golgi-derived vesicles by activating the exocyst via RhoA to allow the formation of primary cilia.


Subject(s)
Cilia , Septins , rhoA GTP-Binding Protein , Cilia/metabolism , Cytoplasm/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Septins/genetics , Septins/metabolism , Signal Transduction , rhoA GTP-Binding Protein/metabolism
2.
Membranes (Basel) ; 11(12)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34940424

ABSTRACT

ABCB1/P-glycoprotein is an ATP binding cassette transporter that is involved in the clearance of xenobiotics, and it affects the disposition of many drugs in the body. Conformational flexibility of the protein within the membrane is an intrinsic part of its mechanism of action, but this has made structural studies challenging. Here, we have studied different conformations of P-glycoprotein simultaneously in the presence of ivacaftor, a known competitive inhibitor. In order to conduct this, we used high contrast cryo-electron microscopy imaging with a Volta phase plate. We associate the presence of ivacaftor with the appearance of an additional density in one of the conformational states detected. The additional density is in the central aqueous cavity and is associated with a wider separation of the two halves of the transporter in the inward-facing state. Conformational changes to the nucleotide-binding domains are also observed and may help to explain the stimulation of ATPase activity that occurs when transported substrate is bound in many ATP binding cassette transporters.

3.
J Biol Chem ; 296: 100680, 2021.
Article in English | MEDLINE | ID: mdl-33872598

ABSTRACT

Primary cilia are hubs for several signaling pathways, and disruption in cilia function and formation leads to a range of diseases collectively known as ciliopathies. Both ciliogenesis and cilia maintenance depend on vesicle trafficking along a network of microtubules and actin filaments toward the basal body. The DIAPH (Diaphanous-related) family of formins promote both actin polymerization and microtubule (MT) stability. Recently, we showed that the formin DIAPH1 is involved in ciliogenesis. However, the role of other DIAPH family members in ciliogenesis had not been investigated. Here we show that depletion of either DIAPH2 or DIAPH3 also disrupted ciliogenesis and cilia length. DIAPH3 depletion also reduced trafficking within cilia. To specifically examine the role of DIAPH3 at the base, we used fused full-length DIAPH3 to centrin, which targeted DIAPH3 to the basal body, causing increased trafficking to the ciliary base, an increase in cilia length, and formation of bulbs at the tips of cilia. Additionally, we confirmed that the microtubule-stabilizing properties of DIAPH3 are important for its cilia length functions and trafficking. These results indicate the importance of DIAPH proteins in regulating cilia maintenance. Moreover, defects in ciliogenesis caused by DIAPH depletion could only be rescued by expression of the specific family member depleted, indicating nonredundant roles for these proteins.


Subject(s)
Cilia/metabolism , Formins/metabolism , Actins/metabolism , Cell Line , Humans , Microtubules/metabolism
4.
Mol Biol Cell ; 32(3): 289-300, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33263440

ABSTRACT

Septins are conserved GTP-binding cytoskeletal proteins that polymerize into filaments by end-to-end joining of hetero-oligomeric complexes. In human cells, both hexamers and octamers exist, and crystallography studies predicted the order of the hexamers to be SEPT7-SEPT6-SEPT2-SEPT2-SEPT6-SEPT7, while octamers are thought to have the same core, but with SEPT9 at the ends. However, based on this septin organization, octamers and hexamers would not be expected to copolymerize due to incompatible ends. Here we isolated hexamers and octamers of specific composition from human cells and show that hexamers and octamers polymerize individually and, surprisingly, with each other. Binding of the Borg homology domain 3 (BD3) domain of Borg3 results in distinctive clustering of each filament type. Moreover, we show that the organization of hexameric and octameric complexes is inverted compared with its original prediction. This revised septin organization is congruent with the organization and behavior of yeast septins suggesting that their properties are more conserved than was previously thought.


Subject(s)
Septins/metabolism , Septins/physiology , Animals , Cell Cycle Proteins/metabolism , Cytoskeleton/metabolism , HeLa Cells , Humans , Mammals/metabolism , Polymerization
5.
Cell Rep ; 31(12): 107798, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32579925

ABSTRACT

Multivalent complexes of endothelial adhesion receptors (e.g., selectins) engage leukocytes to orchestrate their migration to inflamed tissues. Proper anchorage and sufficient density (clustering) of endothelial receptors are required for efficient leukocyte capture and rolling. We demonstrate that a polarized spectrin network dictates the stability of the endothelial cytoskeleton, which is attached to the apical membrane, at least in part, by the abundant transmembrane protein CD44. Single-particle tracking revealed that CD44 undergoes prolonged periods of immobilization as it tethers to the cytoskeleton. The CD44-spectrin "picket fence" alters the behavior of bystander molecules-notably, selectins-curtailing their mobility, inducing their apical accumulation, and favoring their clustering within caveolae. Accordingly, depletion of either spectrin or CD44 virtually eliminated leukocyte rolling and adhesion to the endothelium. Our results indicate that a unique spectrin-based apical cytoskeleton tethered to transmembrane pickets-notably, CD44-is essential for proper extravasation of leukocytes in response to inflammation.


Subject(s)
Cytoskeleton/metabolism , Endothelial Cells/metabolism , Hyaluronan Receptors/metabolism , Leukocyte Rolling , Spectrin/metabolism , Actin Cytoskeleton/metabolism , Actins/metabolism , Caveolae/metabolism , Cell Adhesion , Cell Membrane/metabolism , Cell Polarity , Diffusion , Glycocalyx/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Immobilized Proteins/metabolism , Neutrophils , Protein Stability , Selectins/metabolism , Single Molecule Imaging
6.
Vaccine ; 38(16): 3201-3209, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32178907

ABSTRACT

Neisseria meningitidis is the causative agent of meningococcal meningitis and sepsis and remains a significant public health problem in many countries. Efforts to develop a comprehensive vaccine against serogroup B meningococci have focused on the use of surface-exposed outer membrane proteins. Here we report the use of virus-like particles derived from the core protein of Hepatitis B Virus, HBc, to incorporate antigen domains derived from Factor H binding protein (FHbp) and the adhesin NadA. The extracellular domain of NadA was inserted into the major immunodominant region of HBc, and the C-terminal domain of FHbp at the C-terminus (CFHbp), creating a single polypeptide chain 3.7-fold larger than native HBc. Remarkably, cryoelectron microscopy revealed that the construct formed assemblies that were able to incorporate both antigens with minimal structural changes to native HBc. Electron density was weak for NadA and absent for CFHbp, partly attributable to domain flexibility. Following immunization of mice, three HBc fusions (CFHbp or NadA alone, NadA + CFHbp) were able to induce production of IgG1, IgG2a and IgG2b antibodies reactive against their respective antigens at dilutions in excess of 1:18,000. However, only HBc fusions containing NadA elicited the production of antibodies with serum bactericidal activity. It is hypothesized that this improved immune response is attributable to the adoption of a more native-like folding of crucial conformational epitopes of NadA within the chimeric VLP. This work demonstrates that HBc can incorporate insertions of large antigen domains but that maintenance of their three-dimensional structure is likely to be critical in obtaining a protective response.


Subject(s)
Hepatitis B , Meningococcal Vaccines , Neisseria meningitidis, Serogroup B , Neisseria meningitidis , Animals , Antigens, Bacterial/genetics , Antigens, Heterophile , Bacterial Proteins , Cryoelectron Microscopy , Hepatitis B/prevention & control , Hepatitis B Core Antigens/genetics , Hepatitis B virus , Mice , Neisseria meningitidis/genetics , Neisseria meningitidis, Serogroup B/genetics , Viral Core Proteins
7.
Science ; 367(6475): 301-305, 2020 01 17.
Article in English | MEDLINE | ID: mdl-31806695

ABSTRACT

Despite ongoing (macro)pinocytosis of extracellular fluid, the volume of the endocytic pathway remains unchanged. To investigate the underlying mechanism, we used high-resolution video imaging to analyze the fate of macropinosomes formed by macrophages in vitro and in situ. Na+, the primary cationic osmolyte internalized, exited endocytic vacuoles via two-pore channels, accompanied by parallel efflux of Cl- and osmotically coupled water. The resulting shrinkage caused crenation of the membrane, which fostered recruitment of curvature-sensing proteins. These proteins stabilized tubules and promoted their elongation, driving vacuolar remodeling, receptor recycling, and resolution of the organelles. Failure to resolve internalized fluid impairs the tissue surveillance activity of resident macrophages. Thus, osmotically driven increases in the surface-to-volume ratio of endomembranes promote traffic between compartments and help to ensure tissue homeostasis.


Subject(s)
Immunologic Surveillance , Macrophages/immunology , Pinocytosis/immunology , Animals , Calcium Channels/genetics , Calcium Channels/physiology , Endosomes/immunology , Ion Transport , Lipids/immunology , Mice , Mice, Knockout , Organelles/immunology , Osmosis , Sodium/metabolism , Transient Receptor Potential Channels/genetics , Vacuoles/immunology
8.
J Biol Chem ; 294(45): 17105-17116, 2019 11 08.
Article in English | MEDLINE | ID: mdl-31570524

ABSTRACT

Mucin 5B (MUC5B) has an essential role in mucociliary clearance that protects the pulmonary airways. Accordingly, knowledge of MUC5B structure and its interactions with itself and other proteins is critical to better understand airway mucus biology and improve the management of lung diseases such as asthma, cystic fibrosis, and chronic obstructive pulmonary disease (COPD). The role of an N-terminal multimerization domain in the supramolecular organization of MUC5B has been previously described, but less is known about its C-terminal dimerization domain. Here, using cryogenic electron microscopy (cryo-EM) and small-angle X-ray scattering (SAXS) analyses of recombinant disulfide-linked dimeric MUC5B dimerization domain we identified an asymmetric, elongated twisted structure, with a double globular base. We found that the dimerization domain is more resistant to disruption than the multimerization domain suggesting the twisted structure of the dimerization domain confers additional stability to MUC5B polymers. Size-exclusion chromatography-multiangle light scattering (SEC-MALS), SPR-based biophysical analyses and microscale thermophoresis of the dimerization domain disclosed no further assembly, but did reveal reversible, calcium-dependent interactions between the dimerization and multimerization domains that were most active at acidic pH, suggesting that these domains have a role in MUC5B intragranular organization. In summary, our results suggest a role for the C-terminal dimerization domain of MUC5B in compaction of mucin chains during granular packaging via interactions with the N-terminal multimerization domain. Our findings further suggest that the less stable multimerization domain provides a potential target for mucin depolymerization to remove mucus plugs in COPD and other lung pathologies.


Subject(s)
Intracellular Space/metabolism , Mucin-5B/chemistry , Mucin-5B/metabolism , Protein Multimerization , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Models, Molecular , Protein Domains , Protein Stability , Protein Structure, Quaternary
9.
Dev Cell ; 50(3): 283-295.e5, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31231038

ABSTRACT

Scavenger receptor B1 (SR-B1), the main receptor for high-density lipoprotein (HDL), is key in preventing atherosclerosis. It removes cholesterol from HDL, returning the lipid-poor lipoprotein to the circulation. To study the mechanisms controlling SR-B1 dynamics at the plasma membrane and its internalization rate, we developed a single-chain variable fragment (ScFv) antibody to image the receptor in live cells and track the behavior of single SR-B1 molecules. Unlike transferrin receptors, cholera-toxin-binding gangliosides, and bulk membrane markers, SR-B1 was internalized only marginally over hours. Plasmalemmal retention was not attributable to its C-terminal PDZ-binding domain or to attachment to the cortical cytoskeleton. Instead, SR-B1 undergoes multimerization into large metastable clusters that, despite being mobile in the membrane, fail to enter endocytic pathways. SR-B1 multimerization was impaired by mutating its C-terminal leucine zipper and by disrupting actin polymerization, causing rapid receptor internalization. Multimerization and plasmalemmal retention are critical for SR-B1 function.


Subject(s)
Cell Membrane/metabolism , Protein Multimerization , Scavenger Receptors, Class B/metabolism , Actin Cytoskeleton/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , Endocytosis , Hep G2 Cells , Humans , Leucine Zippers , Mutation , Scavenger Receptors, Class B/chemistry , Scavenger Receptors, Class B/genetics
10.
BMC Struct Biol ; 18(1): 17, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30545335

ABSTRACT

BACKGROUND: P-glycoprotein (ABCB1) is an ATP-binding cassette transporter that plays an important role in the clearance of drugs and xenobiotics and is associated with multi-drug resistance in cancer. Although several P-glycoprotein structures are available, these are either at low resolution, or represent mutated and/or quiescent states of the protein. RESULTS: In the post-hydrolytic state the structure of the wild-type protein has been resolved at about 8 Å resolution. The cytosolic nucleotide-binding domains (NBDs) are separated but ADP remains bound, especially at the first NBD. Gaps in the transmembrane domains (TMDs) that connect to an inner hydrophilic cavity are filled by density emerging from the annular detergent micelle. The NBD-TMD linker is partly resolved, being located between the NBDs and close to the Signature regions involved in cooperative NBD dimerization. This, and the gap-filling detergent suggest steric impediment to NBD dimerization in the post-hydrolytic state. Two central regions of density lie in two predicted drug-binding sites, implying that the protein may adventitiously bind hydrophobic substances even in the post-hydrolytic state. The previously unresolved N-terminal extension was observed, and the data suggests these 30 residues interact with the headgroup region of the lipid bilayer. CONCLUSION: The structural data imply that (i) a low basal ATPase activity is ensured by steric blockers of NBD dimerization and (ii) allocrite access to the central cavity may be structurally linked to NBD dimerization, giving insights into the mechanism of drug-stimulation of P-glycoprotein activity.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Cryoelectron Microscopy , Humans , Mice , Peptides/chemistry , Peptides/metabolism , Protein Conformation , Protein Domains , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification
11.
mBio ; 9(3)2018 06 19.
Article in English | MEDLINE | ID: mdl-29921674

ABSTRACT

The UL69 protein from human cytomegalovirus (HCMV) is a multifunctional regulatory protein and a member of the ICP27 protein family conserved throughout herpesviruses. UL69 plays many roles during productive infection, including the regulation of viral gene expression, nuclear export of intronless viral RNAs, and control of host cell cycle progression. Throughout the ICP27 protein family, an ability to self-associate is correlated with the functions of these proteins in transactivating certain viral genes. Here, we determined the domain boundaries of a globular ICP27 homology domain of UL69, which mediates self-association, and characterized the oligomeric state of the isolated domain. Size exclusion chromatography coupled with multiangle light scattering (SEC-MALS) revealed that residues 200 to 540 form a stable homo-tetramer, whereas a shorter region comprising residues 248 to 536 forms a homo-dimer. Structural analysis of the UL69 tetramer by transmission electron microscopy (TEM) revealed a dimer-of-dimers three-dimensional envelope with bridge features likely from a region of the protein unique to betaherpesviruses. The data provide a structural template for tetramerization and improve our understanding of the structural diversity and features necessary for self-association within UL69 and the ICP27 family.IMPORTANCE Human cytomegalovirus (HCMV) infection is widespread in the human population but typically remains dormant in an asymptomatic latent state. HCMV causes disease in neonates and adults with suppressed or impaired immune function, as the virus is activated into a lytic state. All species of herpesvirus express a protein from the ICP27 family which functions as a posttranscriptional activator in the lytic state. In HCMV, this protein is called UL69. The region of sequence conservation in the ICP27 family is a folded domain that mediates protein interactions, including self-association and functions in transactivation. All members thus far analyzed homo-dimerize, with the exception of UL69, which forms higher-order oligomers. Here, we use biochemical and structural data to reveal that UL69 forms stable tetramers composed of a dimer of dimers and determine a region essential for cross-dimer stabilization.


Subject(s)
Cytomegalovirus/metabolism , Trans-Activators/chemistry , Viral Proteins/chemistry , Amino Acid Sequence , Conserved Sequence , Protein Multimerization , Protein Structure, Tertiary , Trans-Activators/ultrastructure , Viral Proteins/ultrastructure
12.
Cell ; 172(1-2): 305-317.e10, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29328918

ABSTRACT

Phagocytic receptors must diffuse laterally to become activated upon clustering by multivalent targets. Receptor diffusion, however, can be obstructed by transmembrane proteins ("pickets") that are immobilized by interacting with the cortical cytoskeleton. The molecular identity of these pickets and their role in phagocytosis have not been defined. We used single-molecule tracking to study the interaction between Fcγ receptors and CD44, an abundant transmembrane protein capable of indirect association with F-actin, hence likely to serve as a picket. CD44 tethers reversibly to formin-induced actin filaments, curtailing receptor diffusion. Such linear filaments predominate in the trailing end of polarized macrophages, where receptor mobility was minimal. Conversely, receptors were most mobile at the leading edge, where Arp2/3-driven actin branching predominates. CD44 binds hyaluronan, anchoring a pericellular coat that also limits receptor displacement and obstructs access to phagocytic targets. Force must be applied to traverse the pericellular barrier, enabling receptors to engage their targets.


Subject(s)
Actin Cytoskeleton/metabolism , Cell Membrane/metabolism , Hyaluronan Receptors/metabolism , Receptors, Immunologic/metabolism , Adult , Animals , Binding Sites , COS Cells , Cells, Cultured , Chlorocebus aethiops , Female , Humans , Hyaluronan Receptors/chemistry , Hyaluronan Receptors/genetics , Hyaluronic Acid/metabolism , Male , Mice , Mice, Inbred C57BL , Protein Binding
13.
Structure ; 25(5): 806-815.e3, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28434914

ABSTRACT

Wzz is an integral inner membrane protein involved in regulating the length of lipopolysaccharide O-antigen glycans and essential for the virulence of many Gram-negative pathogens. In all Wzz homologs, the large periplasmic domain is proposed to be anchored by two transmembrane helices, but no information is available for the transmembrane and cytosolic domains. Here we have studied purified oligomeric Wzz complexes using cryoelectron microscopy and resolved the transmembrane regions within a semi-continuous detergent micelle. The transmembrane helices of each monomer display a right-handed super-helical twist, and do not interact with the neighboring transmembrane domains. Modeling, flexible fitting and multiscale simulation approaches were used to study the full-length complex and to provide explanations for the influence of the lipid bilayer on its oligomeric status. Based on structural and in silico observations, we propose a new mechanism for O-antigen chain-length regulation that invokes synergy of Wzz and its polymerase partner, Wzy.


Subject(s)
Bacterial Proteins/chemistry , Cell Membrane/ultrastructure , Bacterial Proteins/metabolism , Cell Membrane/metabolism , Cryoelectron Microscopy , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Molecular Dynamics Simulation , Protein Binding
14.
Hum Mol Genet ; 25(24): 5311-5320, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27798099

ABSTRACT

Retinoschisin, an octameric retinal-specific protein, is essential for retinal architecture with mutations causing X-linked retinoschisis (XLRS), a monogenic form of macular degeneration. Most XLRS-associated mutations cause intracellular retention, however a subset are secreted as octamers and the cause of their pathology is ill-defined. Therefore, here we investigated the solution structure of the retinoschisin monomer and the impact of two XLRS-causing mutants using a combinatorial approach of biophysics and cryo-EM. The retinoschisin monomer has an elongated structure which persists in the octameric assembly. Retinoschisin forms a dimer of octamers with each octameric ring adopting a planar propeller structure. Comparison of the octamer with the hexadecamer structure indicated little conformational change in the retinoschisin octamer upon dimerization, suggesting that the octamer provides a stable interface for the construction of the hexadecamer. The H207Q XLRS-associated mutation was found in the interface between octamers and destabilized both monomeric and octameric retinoschisin. Octamer dimerization is consistent with the adhesive function of retinoschisin supporting interactions between retinal cell layers, so disassembly would prevent structural coupling between opposing membranes. In contrast, cryo-EM structural analysis of the R141H mutation at ∼4.2Šresolution was found to only cause a subtle conformational change in the propeller tips, potentially perturbing an interaction site. Together, these findings support distinct mechanisms of pathology for two classes of XLRS-associated mutations in the retinoschisin assembly.


Subject(s)
Eye Proteins/chemistry , Eye Proteins/genetics , Retinoschisis/genetics , Structure-Activity Relationship , Animals , COS Cells , Chlorocebus aethiops , Cryoelectron Microscopy , Eye Proteins/ultrastructure , Humans , Mutation/genetics , Protein Conformation , Protein Multimerization , Retina/chemistry , Retina/pathology , Retinoschisis/pathology
15.
Sci Rep ; 6: 34347, 2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27677855

ABSTRACT

TGFß plays key roles in fibrosis and cancer progression, and latency is conferred by covalent linkage to latent TGFß binding proteins (LTBPs). LTBP1 is essential for TGFß folding, secretion, matrix localization and activation but little is known about its structure due to its inherent size and flexibility. Here we show that LTBP1 adopts an extended conformation with stable matrix-binding N-terminus, extended central array of 11 calcium-binding EGF domains and flexible TGFß-binding C-terminus. Moreover we demonstrate that LTBP1 forms short filament-like structures independent of other matrix components. The termini bind to each other to facilitate linear extension of the filament, while the N-terminal region can serve as a branch-point. Multimerization is enhanced in the presence of heparin and stabilized by the matrix cross-linking enzyme transglutaminase-2. These assemblies will extend the span of LTBP1 to potentially allow simultaneous N-terminal matrix and C-terminal fibrillin interactions providing tethering for TGFß activation by mechanical force.

16.
J Biol Chem ; 291(24): 12732-12746, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27059954

ABSTRACT

Since the discovery of bone morphogenetic proteins (BMPs) as pluripotent cytokines extractable from bone matrix, it has been speculated how targeting of BMPs to the extracellular matrix (ECM) modulates their bioavailability. Understanding these processes is crucial for elucidating pathomechanisms of connective tissue disorders characterized by ECM deficiency and growth factor dysregulation. Here, we provide evidence for a new BMP targeting and sequestration mechanism that is controlled by the ECM molecule fibrillin-1. We present the nanoscale structure of the BMP-7 prodomain-growth factor complex using electron microscopy, small angle x-ray scattering, and circular dichroism spectroscopy, showing that it assumes an open V-like structure when it is bioactive. However, upon binding to fibrillin-1, the BMP-7 complex is rendered into a closed ring shape, which also confers latency to the growth factor, as demonstrated by bioactivity measurements. BMP-7 prodomain variants were used to map the critical epitopes for prodomain-growth factor and prodomain-prodomain binding. Together, these data show that upon prodomain binding to fibrillin-1, the BMP-7 complex undergoes a conformational change, which denies access of BMP receptors to the growth factor.


Subject(s)
Bone Morphogenetic Protein 7/metabolism , Extracellular Matrix/metabolism , Fibrillin-1/metabolism , Microfibrils/metabolism , Amino Acid Sequence , Animals , Bone Morphogenetic Protein 7/chemistry , Bone Morphogenetic Protein 7/genetics , Cell Line , Circular Dichroism , Fibrillin-1/chemistry , Fibrillin-1/genetics , HEK293 Cells , Humans , Microscopy, Electron, Transmission , Models, Molecular , Nanostructures/chemistry , Nanostructures/ultrastructure , Protein Binding , Protein Conformation , Protein Domains , Protein Structure, Secondary , Scattering, Small Angle , Surface Plasmon Resonance , X-Ray Diffraction
17.
Sci Rep ; 6: 21456, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26902455

ABSTRACT

The mammalian tolloid family of metalloproteinases is essential for tissue patterning and extracellular matrix assembly. The four members of the family: bone morphogenetic protein-1 (BMP-1), mammalian tolloid (mTLD), tolloid-like (TLL)-1 and TLL-2 differ in their substrate specificity and activity levels, despite sharing similar domain organization. We have previously described a model of substrate exclusion by dimerisation to explain differences in the activities of monomeric BMP-1 and dimers of mTLD and TLL-1. Here we show that TLL-2, the least active member of the tolloid family, is predominantly monomeric in solution, therefore it appears unlikely that substrate exclusion via dimerisation is a mechanism for regulating TLL-2 activity. X-ray scattering and electron microscopy structural and biophysical analyses reveal an elongated shape for the monomer and flexibility in the absence of calcium. Furthermore, we show that TLL-2 can cleave chordin in vitro, similar to other mammalian tolloids, but truncated forms of TLL-2 mimicking BMP-1 are unable to cleave chordin. However, both the N- and C-terminal non-catalytic domains from all mammalian tolloids bind chordin with high affinity. The mechanisms underlying substrate specificity and activity in the tolloid family are complex with variation between family members and depend on both multimerisation and substrate interaction.


Subject(s)
Bone Morphogenetic Protein 1/chemistry , Calcium/chemistry , Glycoproteins/chemistry , Intercellular Signaling Peptides and Proteins/chemistry , Protein Interaction Domains and Motifs , Tolloid-Like Metalloproteinases/chemistry , Alternative Splicing , Animals , Bone Morphogenetic Protein 1/genetics , Bone Morphogenetic Protein 1/metabolism , Enzyme Assays , Gene Expression , Glycoproteins/genetics , Glycoproteins/metabolism , HEK293 Cells , Humans , Hydrodynamics , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Kinetics , Models, Molecular , Protein Binding , Protein Multimerization , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Tolloid-Like Metalloproteinases/genetics , Tolloid-Like Metalloproteinases/metabolism
18.
Soft Matter ; 12(6): 1915-23, 2016 Feb 14.
Article in English | MEDLINE | ID: mdl-26702608

ABSTRACT

Two complementary ß-sheet-forming decapeptides have been created that form binary self-repairing hydrogels upon combination of the respective free-flowing peptide solutions at pH 7 and >0.28 wt%. The component peptides showed little structure separately but formed extended ß-sheet fibres upon mixing, which became entangled to produce stiff hydrogels. Microscopy revealed two major structures; thin fibrils with a twisted or helical appearance and with widths comparable to the predicted lengths of the peptides within a ß-sheet, and thicker, longer, interwoven fibres that appear to comprise laterally-packed fibrils. A range of gel stiffnesses (G' from 0.05 to 100 kPa) could be attained in this system by altering the assembly conditions, stiffnesses that cover the rheological properties desirable for cell culture scaffolds. Doping in a RGD-tagged component peptide at 5 mol% improved 3T3 fibroblast attachment and viability compared to hydrogel fibres without RGD functionalisation.


Subject(s)
Hydrogels/chemistry , Oligopeptides/chemistry , Tissue Scaffolds/chemistry , Amyloid/chemistry , Protein Structure, Secondary , Rheology
19.
Biochem Soc Trans ; 43(5): 795-800, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26517884

ABSTRACT

Chordin-mediated regulation of bone morphogenetic protein (BMP) family growth factors is essential in early embryogenesis and adult homoeostasis. Chordin binds to BMPs through cysteine-rich von Willebrand factor type C (vWC) homology domains and blocks them from interacting with their cell surface receptors. These domains also self-associate and enable chordin to target related proteins to fine-tune BMP regulation. The chordin-BMP inhibitory complex is strengthened by the secreted glycoprotein twisted gastrulation (Tsg); however, inhibition is relieved by cleavage of chordin at two specific sites by tolloid family metalloproteases. As Tsg enhances this cleavage process, it serves a dual role as both promoter and inhibitor of BMP signalling. Recent developments in chordin research suggest that rather than simply being by-products, the cleavage fragments of chordin continue to play a role in BMP regulation. In particular, chordin cleavage at the C-terminus potentiates its anti-BMP activity in a type-specific manner.


Subject(s)
Bone Morphogenetic Protein Receptors/antagonists & inhibitors , Bone Morphogenetic Proteins/antagonists & inhibitors , Glycoproteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Models, Biological , Proteins/metabolism , Signal Transduction , Tolloid-Like Metalloproteinases/metabolism , Animals , Bone Morphogenetic Protein Receptors/agonists , Bone Morphogenetic Protein Receptors/chemistry , Bone Morphogenetic Protein Receptors/metabolism , Bone Morphogenetic Proteins/chemistry , Bone Morphogenetic Proteins/metabolism , Glycoproteins/chemistry , Humans , Intercellular Signaling Peptides and Proteins/chemistry , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Interaction Domains and Motifs , Protein Stability , Proteins/chemistry , Proteolysis , Tolloid-Like Metalloproteinases/chemistry
20.
Nat Commun ; 6: 8623, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26465210

ABSTRACT

Phagocytosis is responsible for the elimination of particles of widely disparate sizes, from large fungi or effete cells to small bacteria. Though superficially similar, the molecular mechanisms involved differ: engulfment of large targets requires phosphoinositide 3-kinase (PI3K), while that of small ones does not. Here, we report that inactivation of Rac and Cdc42 at phagocytic cups is essential to complete internalization of large particles. Through a screen of 62 RhoGAP-family members, we demonstrate that ARHGAP12, ARHGAP25 and SH3BP1 are responsible for GTPase inactivation. Silencing these RhoGAPs impairs phagocytosis of large targets. The GAPs are recruited to large--but not small--phagocytic cups by products of PI3K, where they synergistically inactivate Rac and Cdc42. Remarkably, the prominent accumulation of phosphatidylinositol 3,4,5-trisphosphate characteristic of large-phagosome formation is less evident during phagocytosis of small targets, accounting for the contrasting RhoGAP distribution and the differential requirement for PI3K during phagocytosis of dissimilarly sized particles.


Subject(s)
Actins/metabolism , Phagocytosis , Phosphatidylinositol 3-Kinases/metabolism , rho GTP-Binding Proteins/metabolism , GTPase-Activating Proteins/metabolism , Healthy Volunteers , Humans , Rho Guanine Nucleotide Exchange Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...