Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Biomed Eng ; 31(6): 741-51, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12797625

ABSTRACT

The fast orthogonal search (FOS) algorithm has been shown to accurately model various types of time series by implicitly creating a specialized orthogonal basis set to fit the desired time series. When the data contain periodic components, FOS can find frequencies with a resolution greater than the discrete Fourier transform (DFT) algorithm. Frequencies with less than one period in the record length, called subharmonic frequencies, and frequencies between the bins of a DFT, can be resolved. This paper considers the resolution of subharmonic frequencies using the FOS algorithm. A new criterion for determining the number of non-noise terms in the model is introduced. This new criterion does not assume the first model term fitted is a dc component as did the previous stopping criterion. An iterative FOS algorithm called FOS first-term reselection (FOS-FTR), is introduced. FOS-FTR reduces the mean-square error of the sinusoidal model and selects the subharmonic frequencies more accurately than does the unmodified FOS algorithm.


Subject(s)
Algorithms , Models, Biological , Signal Processing, Computer-Assisted , Computer Simulation , Diffusion , Fourier Analysis , Motion , Reproducibility of Results , Sensitivity and Specificity , Spectrum Analysis/methods , Stochastic Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...