Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Hematol ; 132: 104178, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38340948

ABSTRACT

Myeloproliferative neoplasms (MPNs) are driven by hyperactivation of JAK-STAT signaling but can demonstrate skewed hematopoiesis upon acquisition of additional somatic mutations. Here, using primary MPN samples and engineered embryonic stem cells, we demonstrate that mutations in JAK2 induced a significant increase in erythroid colony formation, whereas mutations in additional sex combs-like 1 (ASXL1) led to an erythroid colony defect. RNA-sequencing revealed upregulation of protein arginine methyltransferase 6 (PRMT6) induced by mutant ASXL1. Furthermore, genetic perturbation of PRMT6 exacerbated the MPN disease burden, including leukemic engraftment and splenomegaly, in patient-derived xenograft models, highlighting a novel tumor-suppressive function of PRMT6. However, augmented erythroid potential and bone marrow human CD71+ cells following PRMT6 knockdown were reserved only for primary MPN samples harboring ASXL1 mutations. Last, treatment of CD34+ hematopoietic/stem progenitor cells with the PRMT6 inhibitor EPZ020411 induced expression of genes involved in heme metabolism, hemoglobin, and erythropoiesis. These findings highlight interactions between JAK2 and ASXL1 mutations and a unique erythroid regulatory network in the context of mutant ASXL1.


Subject(s)
Myeloproliferative Disorders , Neoplasms , Humans , Erythropoiesis/genetics , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Signal Transduction , Mutation , Repressor Proteins/genetics , Repressor Proteins/metabolism , Nuclear Proteins/genetics , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism
2.
Blood Adv ; 6(2): 611-623, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34644371

ABSTRACT

Targeted inhibitors of JAK2 (eg ruxolitinib) often provide symptomatic relief for myeloproliferative neoplasm (MPN) patients, but the malignant clone persists and remains susceptible to disease transformation. These observations suggest that targeting alternative dysregulated signaling pathways may provide therapeutic benefit. Previous studies identified NFκB pathway hyperactivation in myelofibrosis (MF) and secondary acute myeloid leukemia (sAML) that was insensitive to JAK2 inhibition. Here, we provide evidence that NFκB pathway inhibition via pevonedistat targets malignant cells in MPN patient samples as well as in MPN and patient-derived xenograft mouse models that are nonredundant with ruxolitinib. Colony forming assays revealed preferential inhibition of MF colony growth compared with normal colony formation. In mass cytometry studies, pevonedistat blunted canonical TNFα responses in MF and sAML patient CD34+ cells. Pevonedistat also inhibited hyperproduction of inflammatory cytokines more effectively than ruxolitinib. Upon pevonedistat treatment alone or in combination with ruxolitinib, MPN mouse models exhibited reduced disease burden and improved survival. These studies demonstrating efficacy of pevonedistat in MPN cells in vitro as well as in vivo provide a rationale for therapeutic inhibition of NFκB signaling for MF treatment. Based on these findings, a Phase 1 clinical trial combining pevonedistat with ruxolitinib has been initiated.


Subject(s)
Leukemia, Myeloid, Acute , Myeloproliferative Disorders , Primary Myelofibrosis , Animals , Cyclopentanes/therapeutic use , Humans , Leukemia, Myeloid, Acute/pathology , Mice , Myeloproliferative Disorders/drug therapy , Myeloproliferative Disorders/pathology , Primary Myelofibrosis/pathology , Pyrimidines
3.
Leukemia ; 33(8): 1978-1995, 2019 08.
Article in English | MEDLINE | ID: mdl-30718771

ABSTRACT

The distinct clinical features of myelofibrosis (MF) have been attributed in part to dysregulated inflammatory cytokine production. Circulating cytokine levels are elevated in MF patients; a subset of which have been shown to be poor prognostic indicators. In this study, cytokine overproduction was examined in MF patient plasma and in MF blood cells ex vivo using mass cytometry. Plasma cytokines measured following treatment with ruxolitinib remained markedly abnormal, indicating that aberrant cytokine production persists despite therapeutic JAK2 inhibition. In MF patient samples, 14/15 cytokines measured by mass cytometry were found to be constitutively overproduced, with the principal cellular source for most cytokines being monocytes, implicating a non-cell-autonomous role for monocyte-derived cytokines impacting disease-propagating stem/progenitor cells in MF. The majority of cytokines elevated in MF exhibited ex vivo hypersensitivity to thrombopoietin (TPO), toll-like receptor (TLR) ligands, and/or tumor necrosis factor (TNF). A subset of this group (including TNF, IL-6, IL-8, IL-10) was minimally sensitive to ruxolitinib. All TPO/TLR/TNF-sensitive cytokines, however, were sensitive to pharmacologic inhibition of NFκB and/or MAP kinase signaling. These results indicate that NFκB and MAP kinase signaling maintain cytokine overproduction in MF, and that inhibition of these pathways may provide optimal control of inflammatory pathophysiology in MF.


Subject(s)
Cytokines/biosynthesis , Janus Kinases/physiology , MAP Kinase Signaling System/physiology , NF-kappa B/physiology , Primary Myelofibrosis/immunology , STAT Transcription Factors/physiology , Signal Transduction/physiology , Humans , MAP Kinase Signaling System/drug effects , Monocytes/immunology , NF-kappa B/antagonists & inhibitors , Nitriles , Primary Myelofibrosis/drug therapy , Pyrazoles/therapeutic use , Pyrimidines , Thrombopoietin/pharmacology , Toll-Like Receptors/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...