Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 308(2): 627-35, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14593085

ABSTRACT

Calcimimetic compounds, which activate the parathyroid cell Ca(2+) receptor (CaR) and inhibit parathyroid hormone (PTH) secretion, are under experimental study as a treatment for hyperparathyroidism. This report describes the salient pharmacodynamic properties, using several test systems, of a new calcimimetic compound, cinacalcet HCl. Cinacalcet HCl increased the concentration of cytoplasmic Ca(2+) ([Ca(2+)](i)) in human embryonic kidney 293 cells expressing the human parathyroid CaR. Cinacalcet HCl (EC(50) = 51 nM) in the presence of 0.5 mM extracellular Ca(2+) elicited increases in [Ca(2+)](i) in a dose- and calcium-dependent manner. Similarly, in the presence of 0.5 mM extracellular Ca(2+), cinacalcet HCl (IC(50) = 28 nM) produced a concentration-dependent decrease in PTH secretion from cultured bovine parathyroid cells. Using rat medullary thyroid carcinoma 6-23 cells expressing the CaR, cinacalcet HCl (EC(50) = 34 nM) produced a concentration-dependent increase in calcitonin secretion. In vivo studies in rats demonstrated cinacalcet HCl is orally bioavailable and displays approximately linear pharmacokinetics over the dose range of 1 to 36 mg/kg. Furthermore, this compound suppressed serum PTH and blood-ionized Ca(2+) levels and increased serum calcitonin levels in a dose-dependent manner. Cinacalcet was about 30-fold more potent at lowering serum levels of PTH than it was at increasing serum calcitonin levels. The S-enantiomer of cinacalcet (S-AMG 073) was at least 75-fold less active in these assay systems. The present findings provide compelling evidence that cinacalcet HCl is a potent and stereoselective activator of the parathyroid CaR and, as such, might be beneficial in the treatment of hyperparathyroidism.


Subject(s)
Calcitonin/metabolism , Naphthalenes/pharmacology , Parathyroid Glands/drug effects , Parathyroid Hormone/metabolism , Animals , Calcitonin/blood , Calcium/blood , Calcium-Binding Proteins/metabolism , Cells, Cultured , Cinacalcet , Humans , Male , Naphthalenes/pharmacokinetics , Parathyroid Glands/metabolism , Parathyroid Hormone/blood , Phosphorus/blood , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL