Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Monit ; 6(9): 734-9, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15346176

ABSTRACT

Ambient aerosol number concentrations and size distributions were measured in both indoor and outdoor environments using two identical co-located and concurrently operated optical particle counters (OPCs). Indoor measurements were performed in a research laboratory, whereas two different locations were used for outdoor measurements; the sampling duration exceeded 12 hours and one hour respectively. Results from the two OPCs have been presented for eight size classes between 0.5 and 20 [micro sign]m, represented by central value diameters 0.875, 1.5, 2.75, 4.25, 6.25, 8.75, 12.5 and 15 microm. Overall, for the six indoor and outdoor experiments conducted at different times of day, the mean particle count ratios from the two OPCs for the individual samples showed +/-20% variation for indoor experiments and +/-50% variations for outdoor experiments. Significant random departures of the mean ratios from unity at all size classes were noticed even for indoor sample periods exceeding 20 hours. However, the coefficient of determination (R(2)) for the plots of readings from the two OPCs indicated higher consistency for "fine" particles (0.5-3.5 microm) than for "coarse" particles (10-20 microm), with average R(2) > 0.8 and R(2) < 0.5 respectively. Poisson counting statistics help to explain the divergence in the latter case where number concentrations were very low for the outdoor experiments. However, it cannot explain the divergence for indoor measurements where the concentrations were much higher. Increasing the averaging period reduced the scatter, especially in size classes with low number concentration. However, this procedure may lead to over-smoothing of data for environments with rapidly changing number concentration. These results indicate that, when two such analysers are used for comparative studies, the divergence between their responses may generate significant values of source contribution or deposition flux, even for nominally similar aerosol populations.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Optics and Photonics , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Particle Size , Reproducibility of Results
2.
J Exp Bot ; 53(369): 737-46, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11886894

ABSTRACT

Potato plants (Solanum tuberosum L. cv. Bintje) were grown in open-top chambers (OTCs) under three CO(2) levels (ambient and 24 h d(-1) seasonal mean concentrations of 550 and 680 micromol mol(-1)) and two O(3) levels (ambient and a seasonal mean 8 h d(-1) concentration of 50 nmol mol(-1)). The objectives were to determine the effects of season-long exposure to these key climate change gases on gas exchange, leaf thickness and epidermal characteristics. The experimental design also provided an ideal opportunity to examine within-leaf variation in epidermal characteristics at the whole-leaf level. Stomatal and epidermal cell density and stomatal index were measured at specific locations on the youngest fully expanded leaf (centre of lamina, mid-way between tip and base) and representative whole leaves from each treatment. Effects on leaf conductance, assimilation rate and instantaneous transpiration efficiency were determined by infrared gas analysis, while anatomical characteristics were examined using a combination of leaf impressions and thin sections. Exposure to elevated CO(2) or O(3) generally increased leaf thickness, leaf area, stomatal density, and assimilation rate, but reduced leaf conductance. The irregular stomatal distribution within leaves resulted from a combination of uneven differentiation and expansion of the epidermal cells. The results are discussed with reference to sampling protocols and the need to account for within-leaf variation when examining the impact of climate change or other environmental factors on epidermal characteristics.


Subject(s)
Carbon Dioxide/pharmacology , Ozone/pharmacology , Plant Epidermis/drug effects , Plant Leaves/drug effects , Solanum tuberosum/drug effects , Atmosphere Exposure Chambers , Carbon Dioxide/metabolism , Environment , Light , Ozone/metabolism , Photosynthesis/drug effects , Plant Leaves/physiology , Plant Transpiration/drug effects , Solanum tuberosum/physiology , Temperature
3.
Environ Monit Assess ; 73(3): 291-314, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11878637

ABSTRACT

Elevated particulate matter concentrations in urban locations have normally been associated with local traffic emissions. Recently it has been suggested that such episodes are influenced to a high degree by PM10 sources external to urban areas. To further corroborate this hypothesis, linear regression was sought between PM10 concentrations measured at eight urban sites in the U.K., with particulate sulphate concentration measured at two rural sites, for the years 1993-1997. Analysis of the slopes, intercepts and correlation coefficients indicate a possible relationship between urban PM10 and rural sulphate concentrations. The influences of wind direction and of the distance of the urban from the rural sites on the values of the three statistical parameters are also explored. The value of linear regression as an analysis tool in such cases is discussed and it is shown that an analysis of the sign of the rate of change of the urban PM10 and rural sulphate concentrations provides a more realistic method of correlation. The results indicate a major influence on urban PM10 concentrations from the eastern side of the United Kingdom. Linear correlation was also sought using PM10 data from nine urban sites in London and nearby rural Rochester. Analysis of the magnitude of the gradients and intercepts together with episode correlation analysis between the two sites showed the effect of transported PM10 on the local London concentrations. This article also presents methods to estimate the influence of rural and urban PM10 sources on urban PM10 concentrations and to obtain a rough estimate of the transboundary contribution to urban air pollution from the PM10 concentration data of the urban site.


Subject(s)
Air Pollutants/analysis , Vehicle Emissions , Air Movements , Cities , Particle Size , Reference Values , Rural Population , Sulfates/analysis , United Kingdom
4.
Physiol Plant ; 111(4): 501-511, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11299015

ABSTRACT

This study examined the impact of season-long exposure to elevated carbon dioxide (CO2) and ozone (O3), individually and in combination, on leaf chlorophyll content and gas exchange characteristics in potato (Solanum tuberosum L. cv. Bintje). Plants grown in open-top chambers were exposed to three CO2 (ambient, 550 and 680 µmol mol-1) and two O3 treatments (ambient and elevated; 25 and 65 nmol mol-1, 8 h day-1 means, respectively) between crop emergence and maturity; plants were also grown in unchambered field plots. Non-destructive measurements of chlorophyll content and visible foliar injury were made for all treatments at 2-week intervals between 43 and 95 days after emergence. Gas exchange measurements were made for all except the intermediate 550 µmol mol-1 CO2 treatment. Season-long exposure to elevated O3 under ambient CO2 reduced chlorophyll content and induced extensive visible foliar damage, but had little effect on net assimilation rate or stomatal conductance. Elevated CO2 had no significant effect on chlorophyll content, but greatly reduced the damaging impact of O3 on chlorophyll content and visible foliar damage. Light-saturated assimilation rates for leaves grown under elevated CO2 were consistently lower when measured under either elevated or ambient CO2 than in equivalent leaves grown under ambient CO2. Analysis of CO2 response curves revealed that CO2-saturated assimilation rate, maximum rates of carboxylation and electron transport and respiration decreased with time. CO2-saturated assimilation rate was reduced by elevated O3 during the early stages of the season, while respiration was significantly greater under elevated CO2 as the crop approached maturity. The physiological origins of these responses and their implications for the performance of potato in a changing climate are discussed.

5.
New Phytol ; 149(2): 265-274, 2001 Feb.
Article in English | MEDLINE | ID: mdl-33874630

ABSTRACT

• Changes in the growth and yield of field-grown potato (Solanum tuberosum cv. Bintje) induced by season-long elevated CO2 and/or ozone concentrations are reported. • Open-top chambers and unchambered field plots were used to examine crop responses to three CO2 (ambient, 550 and 680 µmol mol-1 ) and two ozone (ambient and 65 nmol mol-1 , 8 h d-1 seasonal mean) treatments applied throughout the 105 d growing season. • Elevated CO2 increased both above- and below-ground biomass at intermediate and final harvests. Tuber yield at final harvest was increased by c. 40% due to an increase in mean tuber weight rather than tuber number; tuber yield did not differ significantly between the 550 and 680 µmol mol-1 CO2 treatments. Elevated ozone had no significant effect on growth or yield except for the largest size category of tubers, despite extensive visible foliar injury. Significant CO2  × ozone interactions were detected only for senescent leaf number and green leaf ratio. • Elevated CO2 increases biomass and tuber yield in S. tuberosum cv. Bintje even at high ozone concentrations; these findings are discussed in relation to predicted future atmospheric changes.

6.
J Air Waste Manag Assoc ; 50(10): 1805-1817, 2000 Oct.
Article in English | MEDLINE | ID: mdl-28076231

ABSTRACT

Although modeling of gaseous emissions from motor vehicles is now quite advanced, prediction of particulate emissions is still at an unsophisticated stage. Emission factors for gasoline vehicles are not reliably available, since gasoline vehicles are not included in the European Union (EU) emission test procedure. Regarding diesel vehicles, emission factors are available for different driving cycles but give little information about change of emissions with speed or engine load. We have developed size-specific speed-dependent emission factors for gasoline and diesel vehicles. Other vehicle-generated emission factors are also considered and the empirical equation for re-entrained road dust is modified to include humidity effects. A methodology is proposed to calculate modal (accelerating, cruising, or idling) emission factors. The emission factors cover particle size ranges up to 10 um, either from published data or from user-defined size distributions. A particulate matter emission factor model (PMFAC), which incorporates virtually all the available information on particulate emissions for European motor vehicles, has been developed. PMFAC calculates the emission factors for five particle size ranges [i.e., total suspended particulates (TSP), PM10, PM5, PM25, and PM1] from both vehicle exhaust and nonexhaust emissions, such as tire wear, brake wear, and re-entrained road dust. The model can be used for an unlimited number of roads and lanes, and to calculate emission factors near an intersection in user-defined elements of the lane. PMFAC can be used for a variety of fleet structures. Hot emission factors at the user-defined speed can be calculated for individual vehicles, along with relative cold-to-hot emission factors. The model accounts for the proportions of distance driven with cold engines as a function of ambient temperature and road type (i.e., urban, rural, or motorway). A preliminary evaluation of PMFAC with an available dispersion model to predict the airborne concentration in the urban environment is presented. The trial was on the A6 trunk road where it passes through Loughborough, a medium-size town in the English East Midlands. This evaluation for TSP and PM10 was carried out for a range of traffic fleet compositions, speeds, and meteorological conditions. Given the limited basis of the evaluation, encouraging agreement was shown between predicted and measured concentrations.

7.
Int J Occup Saf Ergon ; 4(3): 333-346, 1998 Jan.
Article in English | MEDLINE | ID: mdl-10602626

ABSTRACT

An electronically-controlled sampling system, characterised by its organ pipe design, has been developed for sampling air sequentially, at different heights within the breathing zone. Data are automatically logged at the different receptor levels, for the determination of the average vertical concentration profile of gaseous pollutants. The system has been coupled to a carbon dioxide monitor and used in a brief study of the spatial and temporal variation of indoor carbon dioxide concentration. The system can easily be extended for different heights or modified for use with other types of gas monitor. The results of a trial run, which was carried out in a coffee room, are presented and applications of the Organ Pipe Sequential Sampling (OPSS) system are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...