Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 131(18): 180401, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37977644

ABSTRACT

We introduce a novel approach to evaluate the nonstabilizerness of an N-qubits matrix product state (MPS) with bond dimension χ. In particular, we consider the recently introduced stabilizer Rényi entropies (SREs). We show that the exponentially hard evaluation of the SREs can be achieved by means of a simple perfect sampling of the many-body wave function over the Pauli string configurations. The sampling is achieved with a novel MPS technique, which enables us to compute each sample in an efficient way with a computational cost O(Nχ^{3}). We benchmark our method over randomly generated magic states, as well as in the ground-state of the quantum Ising chain. Exploiting the extremely favorable scaling, we easily have access to the nonequilibrium dynamics of the SREs after a quantum quench.

2.
Phys Rev Lett ; 131(14): 140401, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37862655

ABSTRACT

Owing to its probabilistic nature, a measurement process in quantum mechanics produces a distribution of possible outcomes. This distribution-or its Fourier transform known as full counting statistics (FCS)-contains much more information than say the mean value of the measured observable, and accessing it is sometimes the only way to obtain relevant information about the system. In fact, the FCS is the limit of an even more general family of observables-the charged moments-that characterize how quantum entanglement is split in different symmetry sectors in the presence of a global symmetry. Here we consider the evolution of the FCS and of the charged moments of a U(1) charge truncated to a finite region after a global quantum quench. For large scales these quantities take a simple large-deviation form, showing two different regimes as functions of time: while for times much larger than the size of the region they approach a stationary value set by the local equilibrium state, for times shorter than region size they show a nontrivial dependence on time. We show that, whenever the initial state is also U(1) symmetric, the leading order in time of FCS and charged moments in the out-of-equilibrium regime can be determined by means of a space-time duality. Namely, it coincides with the stationary value in the system where the roles of time and space are exchanged. We use this observation to find some general properties of FCS and charged moments out of equilibrium, and to derive an exact expression for these quantities in interacting integrable models. We test this expression against exact results in the Rule 54 quantum cellular automaton and exact numerics in the XXZ spin-1/2 chain.

3.
Nat Commun ; 10(1): 4820, 2019 10 23.
Article in English | MEDLINE | ID: mdl-31645569

ABSTRACT

Transport phenomena are central to physics, and transport in the many-body and fully-quantum regime is attracting an increasing amount of attention. It has been recently revealed that some quantum spin chains support ballistic transport of excitations at all energies. However, when joining two semi-infinite ballistic parts, such as the XX and XXZ spin-1/2 models, our understanding suddenly becomes less established. Employing a matrix-product-state ansatz of the wavefunction, we study the relaxation dynamics in this latter case. Here we show that it takes place inside a light cone, within which two qualitatively different regions coexist: an inner one with a strong tendency towards thermalization, and an outer one supporting ballistic transport. We comment on the possibility that even at infinite time the system supports stationary currents and displays a non-zero Kapitza boundary resistance. Our study paves the way to the analysis of the interplay between transport, integrability, and local defects.

4.
Phys Rev Lett ; 117(20): 207201, 2016 Nov 11.
Article in English | MEDLINE | ID: mdl-27886467

ABSTRACT

We consider the nonequilibrium time evolution of piecewise homogeneous states in the XXZ spin-1/2 chain, a paradigmatic example of an interacting integrable model. The initial state can be thought of as the result of joining chains with different global properties. Through dephasing, at late times, the state becomes locally equivalent to a stationary state which explicitly depends on position and time. We propose a kinetic theory of elementary excitations and derive a continuity equation which fully characterizes the thermodynamics of the model. We restrict ourselves to the gapless phase and consider cases where the chains are prepared: (1) at different temperatures, (2) in the ground state of two different models, and (3) in the "domain wall" state. We find excellent agreement (any discrepancy is within the numerical error) between theoretical predictions and numerical simulations of time evolution based on time-evolving block decimation algorithms. As a corollary, we unveil an exact expression for the expectation values of the charge currents in a generic stationary state.

5.
Phys Rev Lett ; 110(24): 245301, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-25165934

ABSTRACT

We study the nonequilibrium dynamics of a Tonks-Girardeau gas released from a parabolic trap to a circle. We present the exact analytic solution of the many body dynamics and prove that, for large times and in a properly defined thermodynamic limit, the reduced density matrix of any finite subsystem converges to a generalized Gibbs ensemble. The equilibration mechanism is expected to be the same for all one-dimensional systems.

6.
Phys Rev Lett ; 104(20): 200601, 2010 May 21.
Article in English | MEDLINE | ID: mdl-20867017

ABSTRACT

We analyze the coherent quantum evolution of a many-particle system after slowly sweeping a power-law confining potential. The amplitude of the confining potential is varied in time along a power-law ramp such that the many-particle system finally reaches or crosses a critical point. Under this protocol we derive general scaling laws for the density of excitations created during the nonadiabatic sweep of the confining potential. It is found that the mean excitation density follows an algebraic law as a function of the sweeping rate with an exponent that depends on the space-time properties of the potential. We confirm our scaling laws by first order adiabatic calculation and exact results on the Ising quantum chain with a varying transverse field.

SELECTION OF CITATIONS
SEARCH DETAIL
...