Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Neurophysiol ; 143: 84-94, 2022 11.
Article in English | MEDLINE | ID: mdl-36166901

ABSTRACT

OBJECTIVE: To study changes of thalamo-cortical and cortico-cortical connectivity during wakefulness, non-Rapid Eye Movement (non-REM) sleep, including N2 and N3 stages, and REM sleep, using stereoelectroencephalography (SEEG) recording in humans. METHODS: We studied SEEG recordings of ten patients during wakefulness, non-REM sleep and REM sleep, in seven brain regions of interest including the thalamus. We calculated directed and undirected functional connectivity using a measure of non-linear correlation coefficient h2. RESULTS: The thalamus was more connected to other brain regions during N2 stage and REM sleep than during N3 stage during which cortex was more connected than the thalamus. We found two significant directed links: the first from the prefrontal region to the lateral parietal region in the delta band during N3 sleep and the second from the thalamus to the insula during REM sleep. CONCLUSIONS: These results showed that cortico-cortical connectivity is more prominent in N3 stage than in N2 and REM sleep. During REM sleep we found significant thalamo-insular connectivity, with a driving role of the thalamus. SIGNIFICANCE: We found a pattern of cortical connectivity during N3 sleep concordant with antero-posterior traveling slow waves. The thalamus seemed particularly involved as a hub of connectivity during REM sleep.


Subject(s)
Electroencephalography , Sleep, REM , Electroencephalography/methods , Humans , Sleep/physiology , Sleep, REM/physiology , Thalamus/physiology , Wakefulness/physiology
2.
Neuroinformatics ; 19(4): 639-647, 2021 10.
Article in English | MEDLINE | ID: mdl-33569755

ABSTRACT

Multicentre studies are of utmost importance to confirm hypotheses. The lack of established standards and the ensuing complexity of their data management often hamper their implementation. The Brain Imaging Data Structure (BIDS) is an initiative for organizing and describing neuroimaging and electrophysiological data. Building on BIDS, we have developed two software programs: BIDS Manager and BIDS Uploader. The former has been designed to collect, organise and manage the data and the latter has been conceived to handle their transfer and anonymisation from the partner centres. These two programs aim at facilitating the implementation of multicentre study by providing a standardised framework.


Subject(s)
Brain , Neuroimaging , Brain/diagnostic imaging , Software
3.
Epilepsy Res ; 169: 106528, 2021 01.
Article in English | MEDLINE | ID: mdl-33360538

ABSTRACT

Skin Conductance Biofeedback (SCB) is a non-invasive behavioral treatment for epilepsy based on modulation of Galvanic Skin Response (GSR). We evaluated changes in functional connectivity occurring after SCB. Six patients with drug-resistant temporal lobe epilepsy underwent monthly SCB sessions. For each patient, 10 min of resting-state magnetoencephalographic (MEG) recording were acquired before and after the first and the last SCB session. For each recording we computed the mean weighted phase lag index (WPLI) across all pair of MEG sensors. After SCB, two patients had consistent reduction of seizure frequency (>50 %). Connectivity analysis revealed a decrease of WPLI-beta band in the two responders and an increase of WPLI-alpha connectivity in all patients regardless of the clinical effect. Results suggest that reduction of WPLI-beta-low connectivity is related to the clinical response after SCB.


Subject(s)
Drug Resistant Epilepsy , Epilepsies, Partial , Biofeedback, Psychology , Drug Resistant Epilepsy/therapy , Humans , Magnetoencephalography , Pharmaceutical Preparations
4.
Brain ; 141(10): 2966-2980, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30107499

ABSTRACT

Drug-refractory focal epilepsies are network diseases associated with functional connectivity alterations both during ictal and interictal periods. A large majority of studies on the interictal/resting state have focused on functional MRI-based functional connectivity. Few studies have used electrophysiology, despite its high temporal capacities. In particular, stereotactic-EEG is highly suitable to study functional connectivity because it permits direct intracranial electrophysiological recordings with relative large-scale sampling. Most previous studies in stereotactic-EEG have been directed towards temporal lobe epilepsy, which does not represent the whole spectrum of drug-refractory epilepsies. The present study aims at filling this gap, investigating interictal functional connectivity alterations behind cortical epileptic organization and its association with post-surgical prognosis. To this purpose, we studied a large cohort of 59 patients with malformation of cortical development explored by stereotactic-EEG with a wide spatial sampling (76 distinct brain areas were recorded, median of 13.2 per patient). We computed functional connectivity using non-linear correlation. We focused on three zones defined by stereotactic-EEG ictal activity: the epileptogenic zone, the propagation zone and the non-involved zone. First, we compared within-zone and between-zones functional connectivity. Second, we analysed the directionality of functional connectivity between these zones. Third, we measured the associations between functional connectivity measures and clinical variables, especially post-surgical prognosis. Our study confirms that functional connectivity differs according to the zone under investigation. We found: (i) a gradual decrease of the within-zone functional connectivity with higher values for epileptogenic zone and propagation zone, and lower for non-involved zones; (ii) preferential coupling between structures of the epileptogenic zone; (iii) preferential coupling between epileptogenic zone and propagation zone; and (iv) poorer post-surgical outcome in patients with higher functional connectivity of non-involved zone (within- non-involved zone, between non-involved zone and propagation zone functional connectivity). Our work suggests that, even during the interictal state, functional connectivity is reinforced within epileptic cortices (epileptogenic zone and propagation zone) with a gradual organization. Moreover, larger functional connectivity alterations, suggesting more diffuse disease, are associated with poorer post-surgical prognosis. This is consistent with computational studies suggesting that connectivity is crucial in order to model the spatiotemporal dynamics of seizures.10.1093/brain/awy214_video1awy214media15833456182001.


Subject(s)
Brain/physiopathology , Drug Resistant Epilepsy/physiopathology , Epilepsies, Partial/physiopathology , Neural Pathways/physiopathology , Adolescent , Adult , Child , Child, Preschool , Drug Resistant Epilepsy/etiology , Electroencephalography , Epilepsies, Partial/etiology , Female , Humans , Infant , Infant, Newborn , Male , Malformations of Cortical Development/complications , Malformations of Cortical Development/physiopathology , Nerve Net/physiopathology , Stereotaxic Techniques , Young Adult
5.
Brain Connect ; 6(7): 530-9, 2016 09.
Article in English | MEDLINE | ID: mdl-27140287

ABSTRACT

The reference electrophysiological pattern at seizure onset is the "rapid discharge," as visible on intracerebral electroencephalography (EEG). This discharge typically corresponds to a decrease of synchrony across brain areas. In contrast, the preictal period can exhibit patterns of increased synchrony, which can be quantified by network measures. Our objective was to compare preictal synchrony with a quantification of the rapid discharge as provided by the epileptogenicity index (EI). We investigated 24 seizures from 12 patients recorded by stereotaxic EEG (SEEG). Seizures were classified visually as containing preictal synchrony or not. We computed pairwise nonlinear correlation (h(2)) across channels in the 8 sec preceding the rapid discharge. The sum of ingoing and outgoing links (IN and OUT node strength), as well as the sum of all links (total strength, TOT) were computed for each region. We tested several filtering schemes, and quantified the capacity of each strength measure to serve as a detector of regions with high EI values using a receiver operating characteristic (ROC) analysis. We found that the best correspondence between node strength and EI was obtained for the OUT and TOT measures, for signals filtered in the 15-40 Hz band-that is, for the band corresponding to the spiky part of epileptic discharges. In agreement with these results, we also found that the ROC results were improved when considering only seizures with visible synchronous patterns in the preictal period. Our results suggest that measuring strength of preictal connectivity graphs can bring useful clinical information on the epileptogenic zone.


Subject(s)
Brain/physiopathology , Cortical Synchronization , Electroencephalography/methods , Epilepsies, Partial/physiopathology , Adult , Humans , Signal Processing, Computer-Assisted
6.
Front Neurol ; 6: 192, 2015.
Article in English | MEDLINE | ID: mdl-26388834

ABSTRACT

The mechanisms underlying seizure termination are still unclear despite their therapeutic importance. We studied thalamo-cortical connectivity and synchrony in human mesial temporal lobe seizures in order to analyze their role in seizure termination. Twenty-two seizures from 10 patients with drug-resistant mesial temporal lobe epilepsy undergoing pre-surgical evaluation were analyzed using intracerebral recordings [stereoelectroencephalography (SEEG)]. We performed a measure of SEEG signal interdependencies (non-linear correlation), to estimate the functional connectivity between thalamus and cortical regions. Then, we derived synchronization indices, namely global, thalamic, mesio-temporal, and thalamo-mesio temporal index at the onset and the end of seizures. In addition, an estimation of thalamic "outputs and inputs" connectivity was proposed. Thalamus was consistently involved in the last phase of all analyzed seizures and thalamic synchronization index was significantly more elevated at the end of seizure than at the onset. The global synchronization index at the end of seizure negatively correlated with seizure duration (p = 0.045) and in the same way the thalamic synchronization index showed an inverse tendency with seizure duration. Six seizures out of twenty-two displayed a particular thalamo-cortical spike-and-wave pattern at the end. They were associated to higher values of all synchronization indices and outputs from thalamus (p = 0.0079). SWP seizures displayed a higher and sustained increase of cortical and thalamo-cortical synchronization with a stronger participation of thalamic outputs. We suggest that thalamo-cortical oscillations might contribute to seizure termination via modulation of cortical synchronization. In the subgroup of SWP seizures, thalamus may exert a control on temporal lobe structures by inducing a stable hypersynchronization that ultimately leads to seizure termination.

SELECTION OF CITATIONS
SEARCH DETAIL
...