Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 8529, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38609445

ABSTRACT

Italy has a long history in beef production, with local breeds such as Marchigiana, Chianina, Romagnola, Maremmana, and Podolica which produce high-quality meat. Selection has improved meat production, precocity, growth ability and muscle development, but the genetic determinism of such traits is mostly unknown. Using 33K SNPs-data from young bulls (N = 4064) belonging to these five Italian breeds, we demonstrated that the Maremmana and Podolica rustic breeds are closely related, while the specialised Marchigiana, Chianina, and Romagnola breeds are more differentiated. A genome-wide association study for growth and muscle development traits (average daily gain during the performance test, weight at 1 year old, muscularity) was conducted in the five Italian breeds. Results indicated a region on chromosome 2, containing the myostatin gene (MSTN), which displayed significant genome-wide associations with muscularity in Marchigiana cattle, a breed in which the muscle hypertrophy phenotype is segregating. Moreover, a significant SNP on chromosome 14 was associated, in the Chianina breed, to muscularity. The identification of diverse genomic regions associated with conformation traits might increase our knowledge about the genomic basis of such traits in Italian beef cattle and, eventually, such information could be used to implement marker-assisted selection of young bulls tested in the performance test.


Subject(s)
Genome-Wide Association Study , Genomics , Cattle/genetics , Animals , Male , Humans , Chromosomes, Human, Pair 14 , Italy , Phenotype
2.
Front Genet ; 14: 1099896, 2023.
Article in English | MEDLINE | ID: mdl-36755577

ABSTRACT

Introduction: The Italian peninsula is in the center of the Mediterranean area, and historically it has been a hub for numerous human populations, cultures, and also animal species that enriched the hosted biodiversity. Horses are no exception to this phenomenon, with the peculiarity that the gene pool has been impacted by warfare and subsequent "colonization". In this study, using a comprehensive dataset for almost the entire Italian equine population, in addition to the most influential cosmopolitan breeds, we describe the current status of the modern Italian gene pool. Materials and Methods: The Italian dataset comprised 1,308 individuals and 22 breeds genotyped at a 70 k density that was merged with publicly available data to facilitate comparison with the global equine diversity. After quality control and supervised subsampling to ensure consistency among breeds, the merged dataset with the global equine diversity contained data for 1,333 individuals from 54 populations. Multidimensional scaling, admixture, gene flow, and effective population size were analyzed. Results and Discussion: The results show that some of the native Italian breeds preserve distinct gene pools, potentially because of adaptation to the different geographical contexts of the peninsula. Nevertheless, the comparison with international breeds highlights the presence of strong gene flow from renowned breeds into several Italian breeds, probably due to historical introgression. Coldblood breeds with stronger genetic identity were indeed well differentiated from warmblood breeds, which are highly admixed. Other breeds showed further peculiarities due to their breeding history. Finally, we observed some breeds that exist more on cultural, traditional, and geographical point of view than due to actual genetic distinctiveness.

SELECTION OF CITATIONS
SEARCH DETAIL
...