Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Geriatrics (Basel) ; 9(3)2024 May 09.
Article in English | MEDLINE | ID: mdl-38804316

ABSTRACT

Cardiovascular diseases (CVDs) reflect a huge and diversified condition that influences patient quality of life (QoL) both in the physical and mental aspects, especially in older adults who often present comorbidities and may be affected by cognitive decline. The concept of cognitive reserve (CR), which is built through life course experiences, has widely been considered a protective factor against cognitive decline, while the results of QoL in the field of CVDs are still controversial. In particular, there is a lack of evidence that explicitly explores the effects of CR on the QoL in CVD cases since studies have considered only single CR proxies (e.g., education) or specific cardiovascular conditions. Moreover, none of them have considered the motor reserve (MR), another recent concept that considers the amount of physical activity carried out during a lifespan. Its potential role in preventing age-related diseases has been observed, but more clarification is needed given the importance of the physical component in CVDs. The present state-of-the-art review aims to (i) examine how the literature conceives CR and its proxies in CVDs relating to QoL and (ii) integrate the concept of MR in this framework. Implications for clinical practice will also be discussed.

2.
Microbiol Spectr ; 11(1): e0408322, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36625583

ABSTRACT

Cystic fibrosis transmembrane conductance regulator (CFTR) modulators improve clinical outcomes with varied efficacies in patients with CF. However, the mutual effects of CFTR modulators and bacterial adaptation, together with antibiotic regimens, can influence clinical outcomes. We evaluated the effects of ivacaftor (IVA), lumacaftor (LUM), tezacaftor, elexacaftor, and a three-modulator combination of elexacaftor, tezacaftor, and ivacaftor (ETI), alone or combined with antibiotics, on sequential CF isolates. IVA and ETI showed direct antimicrobial activities against Staphylococcus aureus but not against Pseudomonas aeruginosa. Additive effects or synergies were observed between the CFTR modulators and antibiotics against both species, independently of adaptation to the CF lung. IVA and LUM were the most effective in potentiating antibiotic activity against S. aureus, while IVA and ETI enhanced mainly polymyxin activity against P. aeruginosa. Next, we evaluated the effect of P. aeruginosa pneumonia on the pharmacokinetics of IVA in mice. IVA and its metabolites in plasma, lung, and epithelial lining fluid were increased by P. aeruginosa infection. Thus, CFTR modulators can have direct antimicrobial properties and/or enhance antibiotic activity against initial and adapted S. aureus and P. aeruginosa isolates. Furthermore, bacterial infection impacts airway exposure to IVA, potentially affecting its efficacy. Our findings suggest optimizing host- and pathogen-directed therapies to improve efficacy for personalized treatment. IMPORTANCE CFTR modulators have been developed to correct and/or enhance CFTR activity in patients with specific cystic fibrosis (CF) genotypes. However, it is of great importance to identify potential off-targets of these novel therapies to understand how they affect lung physiology in CF. Since bacterial infections are one of the hallmarks of CF lung disease, the effects (if any) of CFTR modulators on bacteria could impact their efficacy. This work highlights a mutual interaction between CFTR modulators and opportunistic bacterial infections; in particular, it shows that (i) CFTR modulators have an antibacterial activity per se and influence antibiotic efficacy, and (ii) bacterial airway infections affect levels of CFTR modulators in the airways. These findings may help optimize host- and pathogen-directed drug regimens to improve the efficacy of personalized treatment.


Subject(s)
Cystic Fibrosis , Staphylococcal Infections , Animals , Mice , Cystic Fibrosis/microbiology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Staphylococcus aureus/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Mutation
3.
J Am Soc Nephrol ; 11(3): 477-489, 2000 Mar.
Article in English | MEDLINE | ID: mdl-10703671

ABSTRACT

The mechanism(s) by which angiotensin-converting enzyme (ACE) inhibitors prevent glomerular membrane loss of permselective function is still not understood. In male MWF rats, which develop spontaneous proteinuria with age, ACE inhibitors prevent proteinuria and increase glomerular ultrafiltration coefficient. These renoprotective effects are not associated with ultrastructural changes of capillary wall components. This study was undertaken to investigate whether ACE inhibitors modulate functional properties of glomerular basement membrane (GBM) and/or of epithelial cells, both of which have been suggested to play a role in the maintenance of the glomerular filtration barrier. The hydraulic and macromolecular permeability of the GBM were determined, by an in vitro filtration system, in untreated or lisinopril-treated rats and in Wistar rats taken as controls. By indirect immunofluorescence and immunoelectron microscopy, glomerular distribution of the tight junction protein zonula occludens- (ZO-1), a component of the slit diaphragm, was also studied. Results document that spontaneous proteinuria in MWF rats develops without significant changes in the permeability of the GBM to water and albumin, or in the ultrastructure of the podocyte foot processes, but is associated with an important alteration in the distribution of ZO-1 at the glomerular level. Lisinopril, which prevented proteinuria, also prevented glomerular redistribution of the protein. Thus, renoprotective effects of ACE inhibitors are not associated with changes in intrinsic functional properties of GBM, or ultrastructural changes of the epithelial cells, but rather with preservation of glomerular ZO-1 distribution and slit diaphragm function, which are essential for maintaining the filtration barrier.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/pharmacology , Basement Membrane/metabolism , Kidney Glomerulus/metabolism , Lisinopril/pharmacology , Membrane Proteins/metabolism , Phosphoproteins/metabolism , Proteinuria/metabolism , Animals , Fluorescent Antibody Technique, Indirect , In Vitro Techniques , Kidney Glomerulus/pathology , Male , Microscopy, Immunoelectron , Permeability/drug effects , Proteinuria/genetics , Proteinuria/pathology , Rats , Rats, Mutant Strains/genetics , Tissue Distribution , Zonula Occludens-1 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...