Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
FEBS Lett ; 598(1): 140-166, 2024 01.
Article in English | MEDLINE | ID: mdl-38101809

ABSTRACT

Intracellular infections as well as changes in the cell nutritional environment are main events that trigger cellular stress responses. One crucial cell response to stress conditions is autophagy. During the last 30 years, several scenarios involving autophagy induction or inhibition over the course of an intracellular invasion by pathogens have been uncovered. In this review, we will present how this knowledge was gained by studying different microorganisms. We intend to discuss how the cell, via autophagy, tries to repel these attacks with the objective of destroying the intruder, but also how some pathogens have developed strategies to subvert this. These two fates can be compared with a Tango, a dance originated in Buenos Aires, Argentina, in which the partner dancers are in close connection. One of them is the leader, embracing and involving the partner, but the follower may respond escaping from the leader. This joint dance is indeed highly synchronized and controlled, perfectly reflecting the interaction between autophagy and microorganism.


Subject(s)
Dancing , Immunity, Innate , Autophagy
2.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166801, 2023 10.
Article in English | MEDLINE | ID: mdl-37419396

ABSTRACT

Over the last years, the incidence of melanoma, the deadliest form of skin cancer, has risen significantly. Nearly half of the melanoma patients exhibit the BRAFV600E mutation. Although the use of BRAF and MEK inhibitors (BRAFi and MEKi) showed an impressive success rate in melanoma patients, durability of response remains an issue because tumor quickly becomes resistant. Here, we generated and characterized Lu1205 and A375 melanoma cells resistant to vemurafenib (BRAFi). Resistant cells (Lu1205R and A375R) exhibit higher IC50 (5-6 fold increase) and phospho-ERK levels and 2-3 times reduced apoptosis than their sensitive parents (Lu1205S and A375S). Moreover, resistant cells are 2-3 times bigger, display a more elongated morphology and have a modulation of migration capacity. Interestingly, pharmacological inhibition of sphingosine kinases, that prevents sphingosine-1-phosphate production, reduces migration of Lu1205R cells by 50 %. In addition, although Lu1205R cells showed increased basal levels of the autophagy markers LC3II and p62, they have decreased autophagosome degradation and autophagy flux. Remarkably, expression of Rab27A and Rab27B, which are involved in the release of extracellular vesicles are dramatically augmented in resistant cells (i.e. 5-7 fold increase). Indeed, conditioned media obtained from Lu1205R cells increased the resistance to vemurafenib of sensitive cells. Hence, these results support that resistance to vemurafenib modulates migration and the autophagic flux and may be transferred to nearby sensitive melanoma cells by factors that are released to the extracellular milieu by resistant cells.


Subject(s)
Melanoma , Proto-Oncogene Proteins B-raf , Humans , Vemurafenib/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Sulfonamides/pharmacology , Indoles/pharmacology , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Xenograft Model Antitumor Assays , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Protein Kinase Inhibitors/pharmacology , Autophagy
3.
Viruses ; 15(6)2023 05 31.
Article in English | MEDLINE | ID: mdl-37376595

ABSTRACT

Gumboro illness is caused by the highly contagious immunosuppressive infectious bursal disease virus (IBDV), which affects the poultry industry globally. We have previously shown that IBDV hijacks the endocytic pathway to construct viral replication complexes on endosomes linked to the Golgi complex (GC). Then, analyzing crucial proteins involved in the secretory pathway, we showed the essential requirement of Rab1b, the Rab1b downstream effector Golgi-specific BFA resistance factor 1 (GBF1), and its substrate, the small GTPase ADP-ribosylation factor 1 (ARF1), for IBDV replication. In the current work, we focused on elucidating the IBDV assembly sites. We show that viral assembly occurs within single-membrane compartments closely associated with endoplasmic reticulum (ER) membranes, though we failed to elucidate the exact nature of the virus-wrapping membranes. Additionally, we show that IBDV infection promotes the stress of the ER, characterized by an accumulation of the chaperone binding protein (BiP) and lipid droplets (LDs) in the host cells. Overall, our results represent further original data showing the interplay between IBDV and the secretory pathway, making a substantial contribution to the field of birnaviruses-host cell interactions.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Poultry Diseases , Animals , Lipid Droplets , Virus Assembly , Endosomes , Endoplasmic Reticulum Stress , Chickens
4.
J Virol ; 96(4): e0200521, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34878889

ABSTRACT

Birnaviruses are members of the Birnaviridae family, responsible for major economic losses to poultry and aquaculture. The family is composed of nonenveloped viruses with a segmented double-stranded RNA (dsRNA) genome. Infectious bursal disease virus (IBDV), the prototypic family member, is the etiological agent of Gumboro disease, a highly contagious immunosuppressive disease in the poultry industry worldwide. We previously demonstrated that IBDV hijacks the endocytic pathway for establishing the viral replication complexes on endosomes associated with the Golgi complex (GC). Here, we report that IBDV reorganizes the GC to localize the endosome-associated replication complexes without affecting its secretory functionality. By analyzing crucial proteins involved in the secretory pathway, we showed the essential requirement of Rab1b for viral replication. Rab1b comprises a key regulator of GC transport and we demonstrate that transfecting the negative mutant Rab1b N121I or knocking down Rab1b expression by RNA interference significantly reduces the yield of infectious viral progeny. Furthermore, we showed that the Rab1b downstream effector Golgi-specific BFA resistance factor 1 (GBF1), which activates the small GTPase ADP ribosylation factor 1 (ARF1), is required for IBDV replication, since inhibiting its activity by treatment with brefeldin A (BFA) or golgicide A (GCA) significantly reduces the yield of infectious viral progeny. Finally, we show that ARF1 dominant negative mutant T31N overexpression hampered IBDV infection. Taken together, these results demonstrate that IBDV requires the function of the Rab1b-GBF1-ARF1 axis to promote its replication, making a substantial contribution to the field of birnavirus-host cell interactions. IMPORTANCE Birnaviruses are unconventional members of the dsRNA viruses, with the lack of a transcriptionally active core being the main differential feature. This structural trait, among others that resemble those of the plus single-stranded (+ssRNA) viruses features, suggests that birnaviruses might follow a different replication program from that conducted by prototypical dsRNA members and the hypothesis that birnaviruses could be evolutionary links between +ssRNA and dsRNA viruses has been argued. Here, we present original data showing that IBDV-induced GC reorganization and the cross talk between IBDV and the Rab1b-GBF1-ARF1 mediate the intracellular trafficking pathway. The replication of several +ssRNA viruses depends on the cellular protein GBF1, but its role in the replication process is not clear. Thus, our findings make a substantial contribution to the field of birnavirus-host cell interactions and provide further evidence supporting the proposed evolutionary connection role of birnaviruses, an aspect which we consider especially relevant for researchers working in the virology field.


Subject(s)
ADP-Ribosylation Factor 1/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Infectious bursal disease virus/physiology , Secretory Pathway/physiology , Virus Replication/physiology , rab1 GTP-Binding Proteins/metabolism , ADP-Ribosylation Factor 1/genetics , Animals , Brefeldin A/pharmacology , Cell Line , Endosomes/metabolism , Golgi Apparatus/metabolism , Guanine Nucleotide Exchange Factors/antagonists & inhibitors , Host-Pathogen Interactions , Pyridines/pharmacology , Quinolines/pharmacology , Secretory Pathway/drug effects , Viral Replication Compartments/metabolism , Virus Replication/drug effects , rab1 GTP-Binding Proteins/genetics
5.
Article in English | MEDLINE | ID: mdl-33042861

ABSTRACT

Human Cytomegalovirus (HCMV) is a frequent opportunistic pathogen in immunosuppressed patients, which can be involved in kidney allograft dysfunction and rejection. In order to study the pathophysiology of HCMV renal diseases, we concentrated on the impact of HCMV infection on human renal tubular epithelial HK-2 cells. Our aim was to develop a model of infection of HK-2 cells by using the viral strain TB40/E, that contains the extended cell tropism of clinical isolates and the efficient viral multiplication in cell culture of laboratory-adapted strains. We observed that HK-2 cells can be infected by HCMV and expressed viral antigens, but they do not produce extracellular viral particles. We then studied the interplay of HCMV with ciliogenesis and autophagy. Primary cilium (PC) is a stress sensor important to maintain renal tissue homeostasis that projects from the apical side into the lumen of tubule cells. PC formation and length were not modified by HCMV infection. Autophagy, another stress response process critically required for normal kidney functions, was inhibited by HCMV in HK-2 cells with a reduction in the autophagic flux. HCMV classically induces an enlargement of infected cells in vivo and in vitro, and we observed that HCMV infection led to an enlargement of the HK-2 cell volume. Our results constitute therefore an excellent starting point to further explore the role of these mechanisms in renal cells dysfunction.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Autophagy , Cells, Cultured , Epithelial Cells , Humans
6.
J Virol ; 93(15)2019 08 01.
Article in English | MEDLINE | ID: mdl-31118257

ABSTRACT

Junín virus (JUNV), a member of the family Arenaviridae, is the etiological agent of Argentine hemorrhagic fever (AHF), a potentially deadly endemic-epidemic disease affecting the population of the most fertile farming land of Argentina. Autophagy is a degradative process with a crucial antiviral role; however, several viruses subvert the pathway to their benefit. We determined the role of autophagy in JUNV-infected cells by analyzing LC3, a cytoplasmic protein (LC3-I) that becomes vesicle membrane associated (LC3-II) upon induction of autophagy. Cells overexpressing enhanced green fluorescent protein (EGFP)-LC3 and infected with JUNV showed an increased number of LC3 punctate structures, similar to those obtained after starvation or bafilomycin A1 treatment, which leads to autophagosome induction or accumulation, respectively. We also monitored the conversion of LC3-I to LC3-II, observing LC3-II levels in JUNV-infected cells similar to those observed in starved cells. Additionally, we kinetically studied the number of LC3 dots after JUNV infection and found that the virus activated the pathway as early as 2 h postinfection (p.i.), whereas the UV-inactivated virus did not induce the pathway. Cells subjected to starvation or pretreated with rapamycin, a pharmacological autophagy inductor, enhanced virus yield. Also, we assayed the replication capacity of JUNV in Atg5 knockout or Beclin 1 knockdown cells (both critical components of the autophagic pathway) and found a significant decrease in JUNV replication. Taken together, our results constitute the first study indicating that JUNV infection induces an autophagic response, which is functionally required by the virus for efficient propagation.IMPORTANCE Mammalian arenaviruses are zoonotic viruses that cause asymptomatic and persistent infections in their rodent hosts but may produce severe and lethal hemorrhagic fevers in humans. Currently, there are neither effective therapeutic options nor effective vaccines for viral hemorrhagic fevers caused by human-pathogenic arenaviruses, except the vaccine Candid no. 1 against Argentine hemorrhagic fever (AHF), licensed for human use in areas of endemicity in Argentina. Since arenaviruses remain a severe threat to global public health, more in-depth knowledge of their replication mechanisms would improve our ability to fight these viruses. Autophagy is a lysosomal degradative pathway involved in maintaining cellular homeostasis, representing powerful anti-infective machinery. We show, for the first time for a member of the family Arenaviridae, a proviral role of autophagy in JUNV infection, providing new knowledge in the field of host-virus interaction. Therefore, modulation of virus-induced autophagy could be used as a strategy to block arenavirus infections.


Subject(s)
Autophagy , Host-Pathogen Interactions , Junin virus/growth & development , Virus Replication , A549 Cells , Animals , Chlorocebus aethiops , Green Fluorescent Proteins/analysis , Humans , Microscopy, Fluorescence , Microtubule-Associated Proteins/analysis , Recombinant Fusion Proteins/analysis , Staining and Labeling , Time Factors , Vero Cells
7.
Cell Death Dis ; 10(2): 73, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30683840

ABSTRACT

Protein kinase CK2 is a highly conserved and constitutively active Ser/Thr-kinase that phosphorylates a large number of substrates, resulting in increased cell proliferation and survival. A known target of CK2 is Akt, a player in the PI3K/Akt/mTORC1 signaling pathway, which is aberrantly activated in 32% of colorectal cancer (CRC) patients. On the other hand, mTORC1 plays an important role in the regulation of protein synthesis, cell growth, and autophagy. Some studies suggest that CK2 regulates mTORC1 in several cancers. The most recently developed CK2 inhibitor, silmitasertib (formerly CX-4945), has been tested in phase I/II trials for cholangiocarcinoma and multiple myeloma. This drug has been shown to induce autophagy and enhance apoptosis in pancreatic cancer cells and to promote apoptosis in non-small cell lung cancer cells. Nevertheless, it has not been tested in studies for CRC patients. We show in this work that inhibition of CK2 with silmitasertib decreases in vitro tumorigenesis of CRC cells in response to G2/M arrest, which correlates with mTORC1 inhibition and formation of large cytoplasmic vacuoles. Notably, molecular markers indicate that these vacuoles derive from massive macropinocytosis. Altogether, these findings suggest that an aberrantly elevated expression/activity of CK2 may play a key role in CRC, promoting cell viability and proliferation in untreated cells, however, its inhibition with silmitasertib promotes methuosis-like cell death associated to massive catastrophic vacuolization, accounting for decreased tumorigenicity at later times. These characteristics of silmitasertib support a potential therapeutic use in CRC patients and probably other CK2-dependent cancers.


Subject(s)
Cell Death/drug effects , Colorectal Neoplasms/metabolism , Naphthyridines/pharmacology , Protein Kinase Inhibitors/pharmacology , Vacuoles/pathology , Carcinogenesis/drug effects , Casein Kinase II/antagonists & inhibitors , Cell Cycle Checkpoints/drug effects , Cell Movement/drug effects , Cell Survival/drug effects , Colorectal Neoplasms/pathology , HCT116 Cells , HT29 Cells , Humans , Phenazines , Pinocytosis/drug effects , Transfection
8.
Cells ; 7(10)2018 Oct 10.
Article in English | MEDLINE | ID: mdl-30308990

ABSTRACT

Multiple tissues and systems in the organism undergo modifications during aging due to an accumulation of damaged proteins, lipids, and genetic material. To counteract this process, the cells are equipped with specific mechanisms, such as autophagy and senescence. Particularly, the immune system undergoes a process called immunosenescence, giving rise to a chronic inflammatory status of the organism, with a decreased ability to counteract antigens. The obvious result of this process is a reduced defence capacity. Currently, there is evidence that some pathogens are able to accelerate the immunosenescence process for their own benefit. Although to date numerous reports show the autophagy⁻senescence relationship, or the connection between pathogens with autophagy or senescence, the link between the three actors remains unexplored. In this review, we have summarized current knowledge about important issues related to aging, senescence, and autophagy.

9.
Front Microbiol ; 9: 1890, 2018.
Article in English | MEDLINE | ID: mdl-30158914

ABSTRACT

CBA mouse macrophages control Leishmania major infection yet are permissive to Leishmania amazonensis. Few studies have been conducted to assess the role played by autophagy in Leishmania infection. Therefore, we assessed whether the autophagic response of infected macrophages may account for the differential behavior of these two parasite strains. After 24 h of infection, the LC3-II/Act ratio increased in both L. amazonensis- and L. major-infected macrophages compared to uninfected controls, but less than in chloroquine-treated cells. This suggests that L. amazonensis and L. major activate autophagy in infected macrophages, without altering the autophagic flux. Furthermore, L. major-infected cells exhibited higher percentages of DQ-BSA-labeled parasitophorous vacuoles (50%) than those infected by L. amazonensis (25%). However, L. major- and L. amazonensis-induced parasitophorous vacuoles accumulated LysoTracker similarly, indicating that the acidity in both compartment was equivalent. At as early as 30 min, endogenous LC3 was recruited to both L. amazonensis- and L. major-induced parasitophorous vacuoles, while after 24 h a greater percentage of LC3 positive vacuoles was observed in L. amazonensis-infected cells (42.36%) compared to those infected by L. major (18.10%). Noteworthy, principal component analysis (PCA) and an hierarchical cluster analysis completely discriminated L. major-infected macrophages from L. amazonensis-infected cells accordingly to infection intensity and autophagic features of parasite-induced vacuoles. Then, we evaluated whether the modulation of autophagy exerted an influence on parasite infection in macrophages. No significant changes were observed in both infection rate or parasite load in macrophages treated with the autophagic inhibitors wortmannin, chloroquine or VPS34-IN1, as well as with the autophagic inducers rapamycin or physiological starvation, in comparison to untreated control cells. Interestingly, both autophagic inducers enhanced intracellular L. amazonensis and L. major viability, while the pharmacological inhibition of autophagy exerted no effects on intracellular parasite viability. We also demonstrated that autophagy induction reduced NO production by L. amazonensis- and L. major-infected macrophages but not alters arginase activity. These findings provide evidence that although L. amazonensis-induced parasitophorous vacuoles recruit LC3 more markedly, L. amazonensis and L. major similarly activate the autophagic pathway in CBA macrophages. Interestingly, the exogenous induction of autophagy favors L. major intracellular viability to a greater extent than L. amazonensis related to a reduction in the levels of NO.

10.
Article in English | MEDLINE | ID: mdl-29046869

ABSTRACT

Staphylococcus aureus is a pathogen that causes severe infectious diseases that eventually lead to septic and toxic shock. S. aureus infection is characterized by the production of virulence factors, including enzymes and toxins. After internalization S. aureus resides in a phagosome labeled with Rab7 protein. Here, we show that S. aureus generates tubular structures marked with the small GTPases Rab1b and Rab7 and by the autophagic protein LC3 at early times post-infection. As shown by live cell imaging these tubular structures are highly dynamic, extend, branch and grow in length. We have named them S. aureus induced filaments (Saf). Furthermore, we demonstrate that the formation of these filaments depends on the integrity of microtubules and the activity of the motor protein Kinesin-1 (Kif5B) and the Rab-interacting lysosomal protein (RILP). Our group has previously reported that α-hemolysin, a secreted toxin of S. aureus, is responsible of the activation of the autophagic pathway induced by the bacteria. In the present report, we demonstrate that the autophagic protein LC3 is recruited to the membrane of S. aureus induced filaments and that α-hemolysin is the toxin that induces Saf formation. Interestingly, increasing the levels of intracellular cAMP significantly inhibited Saf biogenesis. Remarkably in this report we show the formation of tubular structures that emerge from the S. aureus-containing phagosome and that these tubules generation seems to be required for efficient bacteria replication.


Subject(s)
Bacterial Toxins/metabolism , Hemolysin Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Staphylococcal Infections/microbiology , Staphylococcus aureus/physiology , rab GTP-Binding Proteins/metabolism , Actin Cytoskeleton/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Autophagy , Bacterial Toxins/genetics , CHO Cells , Cricetulus , Hemolysin Proteins/genetics , Microtubule-Associated Proteins/genetics , Phagosomes/metabolism , rab GTP-Binding Proteins/genetics
11.
Mol Biol Cell ; 28(22): 3070-3081, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28904211

ABSTRACT

Autophagy is an evolutionary conserved process by which eukaryotic cells undergo self-digestion of cytoplasmic components. Here we report that a novel Drosophila immunophilin, which we have named Zonda, is critically required for starvation-induced autophagy. We show that Zonda operates at early stages of the process, specifically for Vps34-mediated phosphatidylinositol 3-phosphate (PI3P) deposition. Zonda displays an even distribution under basal conditions and, soon after starvation, nucleates in endoplasmic reticulum-associated foci that colocalize with omegasome markers. Zonda nucleation depends on Atg1, Atg13, and Atg17 but does not require Vps34, Vps15, Atg6, or Atg14. Zonda interacts physically with Atg1 through its kinase domain, as well as with Atg6 and Vps34. We propose that Zonda is an early component of the autophagy cascade necessary for Vps34-dependent PI3P deposition and omegasome formation.


Subject(s)
Autophagy/physiology , Class III Phosphatidylinositol 3-Kinases/metabolism , Immunophilins/metabolism , Animals , Autophagy-Related Proteins , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Immunophilins/genetics , Phagosomes/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol Phosphates/metabolism , Signal Transduction
12.
Article in English | MEDLINE | ID: mdl-28484683

ABSTRACT

Coxiella burnetii, the etiologic agent of Q fever, is a Gram-negative obligate intracellular bacterium. It has been previously described that both the endocytic and autophagic pathways contribute to the Coxiella replicative vacuole (CRV) generation. Galectins are ß-galactoside-binding lectins that accumulate in the cytosol before being secreted via a non-conventional secretory pathway. It has been shown that Galectin-3, -8, -9 monitor bacteria vacuolar rupture and endosomal and lysosomal loss of membrane integrity through binding of host glycans exposed in the cytoplasm after membrane damage. Using microinjection of fluorescence-coupled dextrans, a FRET assay, and galectins distribution, we demonstrate that Coxiella infection actually result in transient phagosomal/CRV membrane damage in a Dot/Icm-dependent manner. We also show the association of different adaptor molecules involved in autophagy and of LC3 to the limiting membrane of the CRV. Moreover, we show that upon autophagy inhibition, the proportion of CRVs labeled with galectins and less acidified increases which is associated with bacteria replication impairment. Based on these observations, we propose that autophagy can facilitate resealing of intracellular damaged membranes.


Subject(s)
Autophagy/physiology , Coxiella burnetii/physiology , Cytosol/metabolism , Galectins/metabolism , Vacuoles/microbiology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Secretion Systems , Beclin-1/genetics , CHO Cells , Cell Membrane , Chlorocebus aethiops , Coxiella burnetii/genetics , Coxiella burnetii/growth & development , Coxiella burnetii/pathogenicity , Cricetulus , Gene Knockdown Techniques , HeLa Cells , Host-Pathogen Interactions/physiology , Humans , Hydrogen-Ion Concentration , Microbial Viability , Phagosomes/metabolism , Polysaccharides/metabolism , Q Fever/microbiology , Q Fever/pathology , Vero Cells
13.
Blood Rev ; 31(5): 300-305, 2017 09.
Article in English | MEDLINE | ID: mdl-28483400

ABSTRACT

Autophagy is a well-known cellular process involved in many physiological and pathological processes. During erythropoiesis, autophagy plays an important role participating in the clearance of unnecessary organelles such as ribosomes and mitochondria (mitophagy) allowing the correct formation of mature red blood cells. The dysfunction of autophagy proteins hamper the correct erythroid maturation, leading to anemia, the release of immature cells from the bone marrow and other hematological abnormalities. Autophagy plays different roles depending on the type of pathology. In leukemia cells, it has been demonstrated that autophagy could be either detrimental, leading to an increase of the apoptosis rate, or protective, acting as a key process that augments proliferation and survival of cancer cells. Thus, understanding the relationship between autophagy and erythropoiesis opens new avenues for the discovery of biochemical and pharmacological targets and for the development of novel therapeutic approaches.


Subject(s)
Autophagy , Erythropoiesis , Animals , Cell Differentiation , Disease Susceptibility , Erythrocytes/cytology , Erythrocytes/metabolism , Hematologic Diseases/etiology , Hematologic Diseases/metabolism , Humans , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
14.
Article in English | MEDLINE | ID: mdl-28164038

ABSTRACT

Viruses are lifeless particles designed for setting virus-host interactome assuring a new generation of virions for dissemination. This interactome generates a pressure on host organisms evolving mechanisms to neutralize viral infection, which places the pressure back onto virus, a process known as virus-host cell co-evolution. Positive-single stranded RNA (+sRNA) viruses are an important group of viral agents illustrating this interesting phenomenon. During replication, their genomic +sRNA is employed as template for translation of viral proteins; among them the RNA-dependent RNA polymerase (RdRp) is responsible of viral genome replication originating double-strand RNA molecules (dsRNA) as intermediates, which accumulate representing a potent threat for cellular dsRNA receptors to initiate an antiviral response. A common feature shared by these viruses is their ability to rearrange cellular membranes to serve as platforms for genome replication and assembly of new virions, supporting replication efficiency increase by concentrating critical factors and protecting the viral genome from host anti-viral systems. This review summarizes current knowledge regarding cellular dsRNA receptors and describes prototype viruses developing replication niches inside rearranged membranes. However, for several viral agents it's been observed both, a complex rearrangement of cellular membranes and a strong innate immune antiviral response induction. So, we have included recent data explaining the mechanism by, even though viruses have evolved elegant hideouts, host cells are still able to develop dsRNA receptors-dependent antiviral response.


Subject(s)
Immunity, Innate , RNA Viruses/enzymology , RNA Viruses/immunology , RNA, Messenger/metabolism , RNA-Dependent RNA Polymerase/metabolism , RNA, Double-Stranded/metabolism
15.
Traffic ; 17(11): 1181-1196, 2016 11.
Article in English | MEDLINE | ID: mdl-27550070

ABSTRACT

Endocytosis is a multistep process engaged in extracellular molecules internalization. Several proteins including the Rab GTPases family coordinate the endocytic pathway. The small GTPase Rab7 is present in late endosome (LE) compartments being a marker of endosome maturation. The Rab interacting lysosomal protein (RILP) is a downstream effector of Rab7 that recruits the functional dynein/dynactin motor complex to late compartments. In the present study, we have found Rab24 as a component of the endosome-lysosome degradative pathway. Rab24 is an atypical protein of the Rab GTPase family, which has been attributed a function in vesicle trafficking and autophagosome maturation. Using a model of transiently expressed proteins in K562 cells, we found that Rab24 co-localizes in vesicular structures labeled with Rab7 and LAMP1. Moreover, using a dominant negative mutant of Rab24 or a siRNA-Rab24 we showed that the distribution of Rab7 in vesicles depends on a functional Rab24 to allow DQ-BSA protein degradation. Additionally, by immunoprecipitation and pull down assays, we have demonstrated that Rab24 interacts with Rab7 and RILP. Interestingly, overexpression of the Vps41 subunit from the homotypic fusion and protein-sorting (HOPS) complex hampered the co-localization of Rab24 with RILP or with the lysosomal GTPase Arl8b, suggesting that Vps41 would affect the Rab24/RILP association. In summary, our data strongly support the hypothesis that Rab24 forms a complex with Rab7 and RILP on the membranes of late compartments. Our work provides new insights into the molecular function of Rab24 in the last steps of the endosomal degradative pathway.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Endocytosis/physiology , Endosomes/physiology , Lysosomes/physiology , rab GTP-Binding Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Endosomes/metabolism , Humans , K562 Cells , Lysosomes/metabolism , Protein Binding , Protein Interaction Mapping , Protein Transport , rab GTP-Binding Proteins/genetics , rab7 GTP-Binding Proteins
16.
Front Cell Dev Biol ; 4: 2, 2016.
Article in English | MEDLINE | ID: mdl-26925400

ABSTRACT

GTPases of the RAB family are key regulators of multiple steps of membrane trafficking. Several members of the RAB GTPase family have been implicated in mitotic progression. In this review, we will first focus on the function of endosome-associated RAB GTPases reported in early steps of mitosis, spindle pole maturation, and during cytokinesis. Second, we will discuss the role of Golgi-associated RAB GTPases at the metaphase/anaphase transition and during cytokinesis.

17.
PLoS One ; 10(12): e0145211, 2015.
Article in English | MEDLINE | ID: mdl-26674774

ABSTRACT

The GTPases belonging to the Rho family control the actin cytoskeleton rearrangements needed for particle internalization during phagocytosis. ROCK and mDia1 are downstream effectors of RhoA, a GTPase involved in that process. Coxiella burnetii, the etiologic agent of Q fever, is internalized by the host´s cells in an actin-dependent manner. Nevertheless, the molecular mechanism involved in this process has been poorly characterized. This work analyzes the role of different GTPases of the Rho family and some downstream effectors in the internalization of C. burnetii by phagocytic and non-phagocytic cells. The internalization of C. burnetii into HeLa and RAW cells was significantly inhibited when the cells were treated with Clostridium difficile Toxin B which irreversibly inactivates members of the Rho family. In addition, the internalization was reduced in HeLa cells that overexpressed the dominant negative mutants of RhoA, Rac1 or Cdc42 or that were knocked down for the Rho GTPases. The pharmacological inhibition or the knocking down of ROCK diminished bacterium internalization. Moreover, C. burnetii was less efficiently internalized in HeLa cells overexpressing mDia1-N1, a dominant negative mutant of mDia1, while the overexpression of the constitutively active mutant mDia1-ΔN3 increased bacteria uptake. Interestingly, when HeLa and RAW cells were infected, RhoA, Rac1 and mDia1 were recruited to membrane cell fractions. Our results suggest that the GTPases of the Rho family play an important role in C. burnetii phagocytosis in both HeLa and RAW cells. Additionally, we present evidence that ROCK and mDia1, which are downstream effectors of RhoA, are involved in that process.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Bacterial Proteins/metabolism , Coxiella burnetii/metabolism , Phagocytosis , rho-Associated Kinases/metabolism , rhoA GTP-Binding Protein/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Bacterial Proteins/genetics , Cell Line , HeLa Cells , Humans , Mice , cdc42 GTP-Binding Protein/genetics , cdc42 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism , rho-Associated Kinases/genetics , rhoA GTP-Binding Protein/genetics
18.
Cell Microbiol ; 17(7): 988-1007, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25565085

ABSTRACT

Infectious bursal disease virus (IBDV) internalization is sparsely known in terms of molecular components of the pathway involved. To describe the cell biological features of IBDV endocytosis, we employed perturbants of endocytic pathways such as pharmacological inhibitors and overexpression of dominant-negative mutants. Internalization analysis was performed quantifying infected cells by immunofluorescence and Western blot detection of the viral protein VP3 at 12 h post-infection reinforced by the analysis of the capsid protein VP2 localization after virus uptake at 1 h post-infection. We compared IBDV infection to the internalization of well-established ligands with defined endocytic pathways: transferrin, cholera-toxin subunit B and dextran. To describe virus endocytosis at the morphological level, we performed ultrastructural studies of viral internalization kinetics in control and actin dynamics-blocked cells. Our results indicate that IBDV endocytic internalization was clathrin- and dynamin-independent, and that IBDV uses macropinocytosis as the primary entry mechanism. After uptake, virus traffics to early endosomes and requires exposure to the low endocytic pH as well as a functional endocytic pathway to complete its replication cycle. Moreover, our results indicate that the GTPase Rab5 is crucial for IBDV entry supporting the participation of the early endosomal pathway in IBDV internalization and infection of susceptible cells.


Subject(s)
Endosomes/virology , Infectious bursal disease virus/physiology , Pinocytosis , Virus Internalization , rab5 GTP-Binding Proteins/metabolism , Animals , Biological Transport , Birds , Blotting, Western , Cell Line , Microscopy, Fluorescence , Time Factors , Viral Structural Proteins/analysis
19.
Autophagy ; 10(12): 2109-21, 2014.
Article in English | MEDLINE | ID: mdl-25426782

ABSTRACT

Protective immunity against Mycobacterium tuberculosis (Mtb) requires IFNG. Besides, IFNG-mediated induction of autophagy suppresses survival of virulent Mtb in macrophage cell lines. We investigated the contribution of autophagy to the defense against Mtb antigen (Mtb-Ag) in cells from tuberculosis patients and healthy donors (HD). Patients were classified as high responders (HR) if their T cells produced significant IFNG against Mtb-Ag; and low responders (LR) when patients showed weak or no T cell responses to Mtb-Ag. The highest autophagy levels were detected in HD cells whereas the lowest quantities were observed in LR patients. Interestingly, upon Mtb-Ag stimulation, we detected a positive correlation between IFNG and MAP1LC3B-II/LC3-II levels. Actually, blockage of Mtb-Ag-induced IFNG markedly reduced autophagy in HR patients whereas addition of limited amounts of IFNG significantly increased autophagy in LR patients. Therefore, autophagy collaborates with human immune responses against Mtb in close association with specific IFNG secreted against the pathogen.


Subject(s)
Antigens, Bacterial/immunology , Autophagy/drug effects , Interferon-gamma/metabolism , Interferon-gamma/pharmacology , Mycobacterium tuberculosis/immunology , Tuberculosis/drug therapy , Autophagy/immunology , Female , Humans , Macrophages/immunology , Macrophages/microbiology , Male , Th1 Cells/drug effects , Th1 Cells/immunology , Tuberculosis/immunology
20.
Oncoimmunology ; 3(9): e955691, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25941621

ABSTRACT

Apoptotic cells have long been considered as intrinsically tolerogenic or unable to elicit immune responses specific for dead cell-associated antigens. However, multiple stimuli can trigger a functionally peculiar type of apoptotic demise that does not go unnoticed by the adaptive arm of the immune system, which we named "immunogenic cell death" (ICD). ICD is preceded or accompanied by the emission of a series of immunostimulatory damage-associated molecular patterns (DAMPs) in a precise spatiotemporal configuration. Several anticancer agents that have been successfully employed in the clinic for decades, including various chemotherapeutics and radiotherapy, can elicit ICD. Moreover, defects in the components that underlie the capacity of the immune system to perceive cell death as immunogenic negatively influence disease outcome among cancer patients treated with ICD inducers. Thus, ICD has profound clinical and therapeutic implications. Unfortunately, the gold-standard approach to detect ICD relies on vaccination experiments involving immunocompetent murine models and syngeneic cancer cells, an approach that is incompatible with large screening campaigns. Here, we outline strategies conceived to detect surrogate markers of ICD in vitro and to screen large chemical libraries for putative ICD inducers, based on a high-content, high-throughput platform that we recently developed. Such a platform allows for the detection of multiple DAMPs, like cell surface-exposed calreticulin, extracellular ATP and high mobility group box 1 (HMGB1), and/or the processes that underlie their emission, such as endoplasmic reticulum stress, autophagy and necrotic plasma membrane permeabilization. We surmise that this technology will facilitate the development of next-generation anticancer regimens, which kill malignant cells and simultaneously convert them into a cancer-specific therapeutic vaccine.

SELECTION OF CITATIONS
SEARCH DETAIL
...